KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg.) 2013 Admission One Time Re- Examination-February-2017

Cat. No: Base.1205. Title: Engineering Mathematics II (3+0) Marks: 50.00 Time: 2 hours

(10x1=10)

Answer all questions

A. Fill up the blanks for the following

3. The value of $\frac{1}{f(D^2)}\cos ax$ is -----

4. $\frac{1}{D^2-4D+4}e^{3x} = ----$

B. Match the following

B

5. One dimensional wave equation

 $(ax + b)^2 \frac{d^2y}{dx^2} + A(ax + b) \frac{dy}{dx} + By = f(x)$

6. One dimensional heat equation

 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$

Laplace equation

 $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$

8. Legendre's equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

C. True or False

9. The series 1+2+3+..... +n+....is convergent

10. x = 0 is a regular point of $\frac{dy}{dx} + xy = 0$

II Write short notes/answers on any FIVE of the following

(5x2=10)

1. Solve $x \frac{dy}{dx} + y = x^3 y^6$

2. Solve $(D^2 + 5D + 6)y = e^x$

3. Solve p(1+q) = qz

4. Find P₂(x) from $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$

5. Solve x(y-z)p + y(z-x)q = z(x-y)

6. Write any two assumptions in deriving one dimensional wave equation

7. Test the convergence of $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \dots \dots \dots \dots \dots$

III Write short answers on any FIVE

(5x4=20)

- 1. Solve by method of variation of parameters $\frac{d^2y}{dx^2} + 16y = \csc 4x$
- 2. Solve the equation $py = xp^2 + a$ where $p = \frac{dy}{dx}$
- 3. Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin\log(1+x)$
- 4. Derive a partial differential equation $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$
- 5. Solve x(y-z)p + y(z-x)q = z(x-y)
- 6. Test the convergence of the series $\frac{1}{3} + \frac{1.2}{3.5} + \frac{1.2.3}{3.5.7} + \cdots$
- 7. Discuss the convergence of $\sum_{n=1}^{a} \frac{n^2}{2^n}$

IV Write essay on any ONE

(1x10=10)

- 1. Derive one dimensional Heat equation and solve it.
- 2. Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} 6 \frac{\partial^2 z}{\partial y^2} = \cos(2x + y)$.
