KERALA AGRICULTURAL UNIVERSITY

 $B. Tech \ (Food. Engg) \ 2014 \ admission$ $\Pi^{nd} \ \ Semester \ Final \ Examination- \ June \ /July-2015$

Cat. No: Basc.1205	Marks: 50
Title: Engineering Mathematics II (3+0)	Time: 2 hour

1 Answer all Questions

 $(10 \times 1 = 10)$

I.a) Fill up the blanks for the following

1. Every sequence which is monotonic and bounded is

3. General solution of $\frac{dy}{dx} = y$ is

1. Particular integral of $(D^2 - 2D + 1)y = e^{2x}$ is ...

b) Match the following

A

5. $x^2 y'' - xy' + y = \log x$

(I) .one dimensional heat equation

В

 $6. \ \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$

(II). One dimensional wave equation

7. $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$

(III) .Two dimensional heat equation

8. $\frac{\partial y}{\partial t} = \mathbf{c}^2 \frac{\partial^2 y}{\partial x^2}$

11

(IV).Cauchy's homogeneous linear equation

c) Write True or False for the following

9. The exponential series $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \infty$ is absolutely convergent

10. The general solution of $(D^2 - D - 2)y = 0$ is $y = c_1e' + c_2e^{-2y}$

Answer any FIVE questions

 $(5 \times 2 = 10)$

1. Explain the ratio test in the context of series convergence

2. Solve
$$\frac{dy}{dx} = \frac{x}{y}$$

- 3. Find the complementary function of $(D^2 + 1)y = \sin 3x$
- 3. Write down the general form of Legendre's linear equation
- 5. Define the ordinary point of a general second order linear differential equation
- **Q**. Show that $\frac{dy}{dx} = e^{x-y}$ is exact

$$\exists \, \text{Solve } \frac{\partial^2 z}{\partial x \partial y} = xy$$

Answer any FIVE questions

(5 x 4=20)

- 1. Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$
 - 2. Test for the convergence $\sum (\log n)^{-2}$
 - 3. Solve $x \frac{dy}{dx} + y = x^3 y^6$
 - 4. Solve $ye^{xy}dx + (xe^{xy} + 2y)dy = 0$
 - 5. Solve $(D^2 4D + 4)y = \sin 4x + e^{3x}$
 - 6. Solve $\frac{d^2y}{dx^2} = y$ by power series method
 - 7. solve $\frac{d^2y}{dx^2} + y = \tan x$, using method of variation of parameters

Answer any ONE question

(1 x 10=10)

- IV. 1. Explain the Raabe's test. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1.5.9...(4n-3)}{2.6.10....(4n-2)} x^n$
 - 2. Derive one dimensional wave equation and find its general solution.