DECLARATION

I hereby declare that this thesis entitled "DEVELOPMENT OF SEMI-CONTINUOUS ULTRASOUND ASSISTED INFRARED DRYER FOR FOOD PRODUCTS" is a bonafide record of research work done by me during the course of research and thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title, of any other University or Society.

Place: Tavanur Date: 13/02/2025 Er. JAHANA THASNEEM P (2021-18-001)

CERTIFICATE

Certified that this thesis entitled "DEVELOPMENT OF SEMI-CONTINUOUS ULTRASOUND ASSISTED INFRARED DRYER FOR FOOD PRODUCTS" is a bonafide record of research work done by Er. JAHANA THASNEEM P (2021-18-001) under my guidance and supervision and that has not previously formed the basis for the award of any degree, diploma, fellowship or associateship to her.

Place: Tavanur Date: 13/02/2025

Dr. RAJESH G K

(Major advisor, Advisory Committee) Assistant Professor Department of Processing and Food Engineering KCAEFT Tavanur

CERTIFICATE

We, the undersigned members of the advisory committee of Er. JAHANA THASNEEM P (2021-18-001), a candidate for the degree of Masters of Technology in Agricultural Engineering with major in Processing and Food Engineering, agree that the thesis entitled "DEVELOPMENT OF SEMI-CONTINUOUS ULTRASOUND ASSISTED INFRARED DRYER FOR FOOD PRODUCTS" may be submitted by Er. JAHANA THASNEEM P (2021-18-001), in partial fulfilment of the requirement for the degree

Dr. RAJESH G K (Major advisor, Advisory Committee) Assistant Professor Department of PFE KCAEFT Tavanur Dr. PRINCE M V (Member, Advisory Committee) Professor & Head Department of PFE KCAEFT Tavanur

Dr. SUDHEER KP

(Member, Advisory Committee) Professor & Head Department of Agricultural Engineering College of Agriculture, Vellanikkara, Thrissur

Smt SREEJA R

(Member, Advisory Committee) Assistant Professor (Biochemistry) Department of PFE KCAEFT Tavanur

Dr. LILIA BABY

(Member, Advisory Committee) Assistant Professor (Community science) KVK, Malappuram

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

It is a pleasure to glance back and recall the path of traverse during the days of hardwork and perseverance. It is still great at this juncture to recall all the faces and spirits in the form of teachers, friends, and near and dear ones. I would consider this work nothing more than incomplete without attending the task of acknowledging the overwhelming help I received during this endeavor.

I place my deep sense of reverence in the feet of the **God Almighty** who has showered his boundless blessings on me enabling the successful completion of this research work.

I gratefully acknowledge **Dr. Rajesh G K.,** Assistant Professor, Department of Processing and Food Engineering and Chairman of the advisory committee for his keen interest and unending benevolence throughout my research work. I am happy to place on record my sincere thanks to **Dr. Jayan P R,** Dean KCAEFT, Tavanur for the help and support extended in completion of this work.

At the outset, it gives me immense pleasure to express my deep sense of gratitude to **Dr. Prince M V,** Professor and Head, Department of Processing and Food Engineering, KCAEFT, Tavanur and member of advisory committee for his abiding interest and helpful gesture, which I cherish forever. I forward my thanks and fervent gratitude to **Smt. Sreeja R,** Assistant Professor (Biochemistry), Department of Processing and Food Engineering, KCAEFT Tavanur. I feel very glad to express my ineffable thanks to **Dr. Lilia Baby**, Assistant Professor, KVK, Malappuram and member of advisory committee for her guidance whenever I required in completing this work.

I extend my unbountiful gratitude to **Dr. Sathian K K**, Former Dean, KCAEFT, Tavanur for his generous, candid affection and support during the study period. I accolade with gratitude the inordinate help and support provided by **Dr. Sajeena S** (PG Academic Officer), **Dr. Rema K P**, Professor, KCAEFT, Tavanur, **Dr.**

Asha Joseph, Professor, KCAEFT, Tavanur, Dr. Abdul Hakkim V M and Dr Anu Varughese, Assistant Professor, KCAEFT, Tavanur for their guidance. I do express my sincere gratitude to the Administrative Officer, KCAEFT, Tavanur for the support rendered in procurement processes for the machine in the execution of the work.

I proffer my heartfelt thanks to all staff of the AICRP on Post-Harvest Technology Laboratory of KCAEFT, Tavanur for their timely help and good words that supported me during my research work.I accolade with gratitude the inordinate amount of help rendered by **Mrs Geetha T R** (Lab Assistant), **Er Shamna N P** (Assistant Professor) and **Smt Sandhya P** (Skilled Assistant CE-PHT) for the help rendered during the execution of the work.

I place my deep sense of gratitude to **Mr Vipin**, **Mr Lenin M K**, **Mr Rajesh** and **Mr Prajith P** (Technicians) for their valuable support and cooperation in developing and executing my work.

I use this opportunity to sincerely thank my dearest friends **Nandhini S**, **Vishnupriya M, Navya K P** and **Hyderali Shihabudheen U H** for the valuable suggestions and invaluable support during my work. I wish to thank all other faculty members of KCAEFT, Tavanur and staff of KCAEFT library Tavanur for their cooperation and help rendered during my research work.

Above all I am greatly indebted to my mother **Mrs. Zuhrabi K**, my father **Mr Abdul Hameed P**, my husband **Mr. Ahamed Khasim Kallungal**, my dearest daughter **Ezwaah Mehwish Kallungal**, my siblings **Mr Hafeez Mohamed P**, **Mr Shaheem P** and **Ms Hamna P** whose inspiration, forbearance and assistance during the period of thesis work empowered me to complete my work.

Jahana Thasneem P

DEDICATED TO

My Beloved Family, Teachers and Friends

Chapter No	Title	Page No
	LIST OF TABLES	i
	LIST OF FIGURES	iii
	LIST OF PLATES	xi
	SYMBOLS AND ABBREVIATIONS	xiii
Ι	INTRODUCTION	1
II	REVIEW OF LITERATURE	9
III	MATERIALS AND METHODS	55
IV	RESULTS AND DISCUSSION	133
V	SUMMARY AND CONCLUSION	298
VI	REFERENCES	309
	APPENDICES	345
	ABSTRACT	382

CONTENTS

LIST OF TABLES

Table NoTitle		Page No
3.1	3.1 Optimization of ultrasound pretreatment for moringa leaves using response surface methodology	
3.2	3.2 Optimization of ultrasound pretreatment for beetroot using response surface methodology	
3.3	RSM design for ultrasound pretreatment of moringa leaves and beetroot	86
3.4	Quality parameters of moringa leaves and beetroot	87
3.5	Parameters assumed for the development of semi-continuous infrared dryer	92
3.6	Optimization of process parameters for infrared drying of moringa leaves using response surface methodology	110
3.7	Optimization of process parameters for infrared drying of beetroot using response surface methodology	111
3.8	RSM design for drying of moringa leaves	114
3.9	RSM design for drying of beetroot	115
3.10	Modeling of drying data	120
3.11	Specifications of heat pump dryer	128
4.1	Engineering properties of moringa leaves	135
4.2	Engineering properties of beetroot	136
4.3	Ultrasonic pretreatment of moringa leaves	139
4.4	Ultrasonic pretreatment of beetroot	140
4.5	Confirmation of the result of ultrasound pretreatment of moringa leaves	157

4.6	Confirmation of the result of ultrasound pretreatment of beetroot	174
4.7	Infrared drying of moringa leaves	180
4.8	Infrared drying of beetroot	181
4.9	Confirmation of the result of infrared drying of moringa leaves	210
4.10	Confirmation of the result of infrared drying of beetroot	241
4.11	Modeling of drying data for US-IR moringa leaves	252
4.12	Modeling of drying data for US-IR beetroot	253
4.13	Comparative evaluation of quality parameters of fresh raw material with the optimized drying condition	295
4.14	Economic analysis of US-IR dried moringa leaves	296
4.15	Economic analysis of US-IR dried beetroot	297

LIST OF FIGURES

Fig. No	Title	Page No
2.1	Experimental setup for ultrasound pretreatment	17
2.2	Electromagnetic spectrum	33
2.3	Extinction of radiation and total energy	34
2.4	Schematic representation of IR heating in food products	36
2.5	Principal absorption bands of the main food components compared with water	36
2.6	Various infrared heating systems	38
2.7	Infrared emitters	38
2.8	Heat distribution with conventional heating	41
2.9	Heat distribution with infrared technology	41
3.1	Operating procedure of ultrasound bath	81
3.2	Operating procedure of infrared dryer	109
4.1	Effect of process parameters on moisture content of moringa leaves	142
4.2	Effect of process parameters on water activity of moringa leaves	144
4.3	Effect of process parameters on antioxidant activity of moringa leaves	146
4.4	Effect of process parameters on vitamin C of moringa leaves	147
4.5	Effect of process parameters on L* value of moringa leaves	149
4.6	Effect of process parameters on a* value of moringa leaves	150

4.7	Effect of process parameters on b* value of moringa leaves	151
4.8	Predicted versus actual values of response: Moisture content (for moringa leaves)	153
4.9	Predicted versus actual values of response: Water activity (for moringa leaves)	153
4.10	Predicted versus actual values of response: Antioxidant activity (for moringa leaves)	154
4.11	Predicted versus actual values of response: Vitamin C (for moringa leaves)	154
4.12	Predicted versus actual values of response: L* value (for moringa leaves)	155
4.13	Predicted versus actual values of response: a* value (for moringa leaves)	155
4.14	Predicted versus actual values of response: b* value (for moringa leaves)	156
4.15	Desirability ramps for optimized condition for ultrasonic pretreatment of moringa leaves	157
4.16	Effect of process parameters on moisture content of beetroot	159
4.17	Effect of process parameters on water activity of beetroot	161
4.18	Effect of process parameters on antioxidant activity of beetroot	163
4.19	Effect of process parameters on betalain content of beetroot	165
4.20	Effect of process parameters on L* value of beetroot	166
4.21	Effect of process parameters on a* value of beetroot	167
4.22	Effect of process parameters on b* value of beetroot	168

4.23	Predicted versus actual values of response: Moisture content (for beetroot)	170
4.24	Predicted versus actual values of response: Water activity (for beetroot)	171
4.25	Predicted versus actual values of response: Antioxidant activity (for beetroot)	171
4.26	Predicted versus actual values of response: Betalain content (for beetroot)	172
4.27	Predicted versus actual values of response: L* value (for beetroot)	172
4.28	Predicted versus actual values of response: a* value (for beetroot)	173
4.29	Predicted versus actual values of response: a* value (for beetroot)	173
4.30	Desirability ramps for optimized condition for ultrasonic pretreatment of beetroot	174
4.31	2D view of developed semi-continuous infrared dryer	176
4.32	3D Developed semi-continuous infrared dryer	176
4.33	Effect of process parameters on drying time of moringa leaves	184
4.34	Effect of process parameters on water activity of moringa leaves	187
4.35	Effect of process parameters on rehydration ratio of moringa leaves	190
4.36	Effect of process parameters on shrinkage of moringa leaves	193
4.37	Effect of process parameters on L* value of moringa leaves	196
4.38	Effect of process parameters on a* value of moringa leaves	199

4.39	Effect of process parameters on b* value of moringa leaves	201
4.40	Effect of process parameters on energy consumption of moringa leaves	204
4.41	Predicted versus actual values of response: Drying time (for moringa leaves)	206
4.42	Predicted versus actual values of response: Water activity (for moringa leaves)	206
4.43	Predicted versus actual values of response: Rehydration ratio (for moringa leaves)	207
4.44	Predicted versus actual values of response: Shrinkage (for moringa leaves)	207
4.45	Predicted versus actual values of response: L* value (for moringa leaves)	208
4.46	Predicted versus actual values of response: a* value (for moringa leaves)	208
4.47	Predicted versus actual values of response: b* value (for moringa leaves)	209
4.48	Predicted versus actual values of response: Energy consumption(for moringa leaves)	209
4.49	Desirability ramps for optimized condition for infrared drying of moringa leaves	211
4.50	Effect of process parameters on drying time of beetroot	214
4.51	Effect of process parameters on water activity of beetroot	217
4.52	Effect of process parameters on rehydration ratio of beetroot	220
4.53	Effect of process parameters on shrinkage of beetroot	223
4.54	Effect of process parameters on L* value of beetroot	226

4.55	Effect of process parameters on a* value of beetroot	229
4.56	Effect of process parameters on b* value of beetroot	232
4.57	Effect of process parameters on energy consumption of beetroot	235
4.58	Predicted versus actual values of response: Drying time (for beetroot)	237
4.59	Predicted versus actual values of response: Water activity (for beetroot)	237
4.60	Predicted versus actual values of response: Rehydration ratio (for beetroot)	238
4.61	Predicted versus actual values of response: Shrinkage (for beetroot)	238
4.62	Predicted versus actual values of response: L* value (for beetroot)	239
4.63	Predicted versus actual values of response: a* value (for beetroot)	239
4.64	Predicted versus actual values of response: b* value (for beetroot)	240
4.65	Predicted versus actual values of response: Energy consumption (for beetroot)	240
4.66	Desirability ramps for optimized condition for infrared drying of beetroot	242
4.67	Moisture versus drying time for moringa leaves	243
4.68	Drying rate versus drying time for moringa leaves	243
4.69	Moisture versus drying time for beetroot	244
4.70	Drying rate versus drying time for beetroot	244
4.71	ln (MR) v/s drying time for moringa leaves	246
4.72	ln (MR) v/s drying time for beetroot	246

4.73	ln (Deff) v/s 1/T for moringa leaves	248
4.74	ln (Deff) v/s 1/T for beetroot	248
4.75	Best fit Page model for US-IR moringa leaves	254
4.76	MR observed v/s MR predicted for Page model for moringa leaves	254
4.77	Best fit Logarithmic model for US-IR beetroot	255
4.78	MR observed v/s MR predicted for Logarithmic Model for beetroot	255
4.79	Moisture content of dried moringa leaves	258
4.80	Water activity of dried moringa leaves	259
4.81	Antioxidant activity of dried moringa leaves	260
4.82	Shrinkage of dried moringa leaves	261
4.83	Rehydration ratio of dried moringa leaves	262
4.84	Vitamin C of dried moringa leaves	263
4.85	Colour parameters of dried moringa leaves	264
4.86	Proximate composition of IR dried moringa leaves	265
4.87	Proximate composition of US-IR dried moringa leaves	266
4.88	Proximate composition of US-HP dried moringa leaves	266
4.89	Proximate composition of US-C dried moringa leaves	267
4.90	Carbohydrate content of dried moringa leaves	267
4.91	Protein content of dried moringa leaves	268
4.92	Fat content of dried moringa leaves	269
4.93	Fibre content of dried moringa leaves	270
4.94	Ash content of dried moringa leaves	271

4.05 Energy content of dried marines lacross	271
4.95 Energy content of dried moringa leaves	2/1
4.96 Total plate count of dried moringa leaves	272
4.97 SEM images of US-HP dried moringa leaves	273
4.98 SEM images of US-IR dried moringa leaves	274
4.99 SEM images of IR dried moringa leaves	274
4.100 Moisture content of dried beetroot	277
4.101 Water activity of dried beetroot	277
4.102 Antioxidant activity of dried beetroot	278
4.103 Shrinkage of dried beetroot	279
4.104 Rehydration ratio of dried beetroot	280
4.105 Betalain content of dried beetroot	281
4.106 Colour parameters of dried beetroot	282
4.107 Proximate composition of IR dried beetroot	283
4.108 Proximate composition of US-IR dried beetroot	283
4.109 Proximate composition of US-HP dried beetroot	284
4.110 Proximate composition of US-C dried beetroot	284
4.111 Carbohydrate content of dried beetroot	285
4.112 Protein content of dried beetroot	286
4.113 Fat content of dried beetroot	287
4.114 Fibre content of dried beetroot	287
4.115 Ash content of dried beetroot	288
4.116 Energy content of dried beetroot	289
4.117 Total plate count of dried beetroot	290
4.118 SEM images of US-HP dried beetroot	291

4.119	SEM images of US-IR dried beetroot	291
4.120	SEM images of IR dried beetroot	292
4.121	Sensory score of moringa leaves	293
4.122	Sensory score of beetroot	294

LIST OF PLATES

Plate No	Title	Page No
3.1	Moringa leaves (Moringa oleifera)	56
3.2	Beetroot (Beta vulgaris)	57
3.3	Overhead projector	58
3.4	Infrared moisture meter	64
3.5	Water activity meter	65
3.6	Tintometer	66
3.7	Coefficient of friction apparatus	67
3.8	Digital refractometer	74
3.9	pH meter	75
3.10	Fruit pressure tester	76
3.11	Hardness tester	76
3.12	Ultrasonic bath with chiller	78
3.13	Drying chamber	101
3.14	Conveyor belt	102
3.15	Motor	102
3.16	Infrared heater assembly	103
3.17	Slip ring, brush holder and brush	104
3.18	Rotating assembly	105
3.19	Blower	106
3.20	Control panel	107
3.21	Frame assembly	107

3.22	Standard electron microscope	126
3.23	Heat pump dryer	127
3.24	Cabinet dryer	130
4.1	Ultrasound treated moringa leaves	158
4.2	Ultrasound treated beetroot	175
4.3	Developed semi-continuous infrared dryer	177
4.4	Infrared dried moringa leaves	256
4.5	Heat pump dried moringa leaves	257
4.6	Cabinet dried moringa leaves	257
4.7	Infrared dried beetroot	275
4.8	Heat pump dried beetroot	275
4.9	Cabinet dried beetroot	276

SYMBOLS AND ABBREVIATIONS

θ	:	Angle of repose
/	:	Per
&	:	And
%	:	Percentage
±	:	Plus or minus
<	:	Less than
>	:	Greater than
"	:	Inch
\leq	:	Less than or equal to
°C	:	Degree celsius
eta	:	Beta
μm	:	Micrometer
3D	:	Three dimensional
ΣC	:	Sum of colonies counted on all retained dishes
ΔE	:	Total colour change
α	:	Absorptivity
Q	:	Reflectivity
т	:	Transmissivity
η	:	Energetic efficiency
μ	:	Coefficient of friction
χ2	:	Chi square
А	:	Absorbance at 538 nm
А	:	Ampere
Α	:	Area of cross section
a*	:	Greenness or redness
AC	:	Antioxidant activity

ACT	:	Actual
AMP	:	Antimicrobial peptide
ANOVA	:	Analysis of variance
aw	:	Water activity
b	•	Intermediate axial length
B. bruxellensi	s:	Brettanomyces bruxellensis
B. subtils	:	Bacillus subtils
b*	:	Blueness or yellowness
BDA	:	British Dietetic Association
С	:	Specific heat
Ca(OH) ₂	:	Calcium hydroxide
Ca^{2+}	:	Calcium ion
CCD	:	Central Composite Design
C _d	:	Specific heat of bone dry matter
cfu	:	Colony forming unit
cm ²	:	Square centimetre
C _p	:	Specific heat capacity of air at constant pressure
C _{Pp}	:	Specific heat of sample
C _{pw}	•	Specific heat of water
CV	•	Coefficient of variance
C _w	:	Specific heat of water
d	:	Base diameter of pile
D	:	Dilution factor corresponding to first dilution
D _c	•	Diameter of smallest circumscribing circle
DC	:	Direct current

D _e	:	Diameter of sphere having the same volume as that of
		particle
D _{eff}	:	Effective moisture diffusivity
DF	:	Dilution factor
D _{final}	:	Geometric mean diameter of particle after drying
D_{g}	:	Geometric mean diameter
D _{initial}	:	Geometric mean diameter of particle before drying
DR	:	Drying rate
dt	:	Duration of drying
D value	:	Decimal reduction time
E	:	Molar extinction coefficient of betacyanin
E162	:	Betanin food additive
E _C	:	Energy used to drive the conveyor belt
E coli	:	Escherichia coli
E_{F}	:	Energy used to drive the fan/blower
E _H	:	Energy used to heat the air
E _{IR}	:	Energy used by the infrared heater
EMR	:	Electromagnetic radiation
$E_{supplied}$:	Energy supplied
E_{T}	:	Total energy
et al	:	And others
Etc	:	Et cetera
F	:	Frictional force
Fig	:	Figure
FIR	:	Far infrared

XVI		

FSSAI	:	Food Safety and Standard Authority of India	
G	:	Geometry	
g	:	Gram	
G-glutamyl	:	Gamma glutamyl transpeptidase	
GHz	:	Gigahertz	
GI	:	Galvanized iron	
h	:	Height of the pile	
h	:	Hour	
ĥ	:	Hueness	
H_2O	:	Water	
H_2SO_4	:	Sulphuric acid	
ha	:	Hectare	
HAD	:	Hot air drying	
HA -IR	:	Hot air assisted infrared	
HAMW	:	Hot air assisted microwave	
hp	:	Horse power	
HPD	:	Heat pump drying	
IR	:	Infrared	
IRD	:	Infrared drying	
IRHAD	:	Infrared assisted hot air drying	
Κ	:	Kelvin	
k	:	Number of different factors	
Κ	:	Thermal conductivity	
KCAEFT	:	Kelappaji College of Agricultural Engineering and	
		Food Technology	
kcal	:	Kilocalorie	
kg	:	Kilogram	
kHz	:	KiloHertz	

kJ	:	Kilojoule
kPa	:	KiloPascal
kW	:	Kilowatt
kWh	:	Kilowatt hour
L	:	Latent heat
L	:	Litre
l	:	Major axial length
L	:	Path length
L*	:	Lightness or darkness
LDPE	:	Low density polyethylene
LPU	:	Low power ultrasonography
m	:	Metre
m^3	:	Cubic metre
mbar	:	Millibar
MC	:	Moisture content
M _d	:	Moisture content dry basis
M_{e}	:	Equilibrium moisture content
MER	:	Moisture Extraction Rate
min	:	Minute
MIR	:	Mid infrared
ml	:	Millilitre
mm	:	Millimetre
M _o	:	Initial moisture content
MOSFET	:	Metal Oxide Semiconductor Field Effect Transistor
MR	:	Moisture ratio
MS	:	Mild steel
MSE	:	Mean Square Error

xviii

M_t	:	Moisture content at time t
M_{t+dt}	:	Moisture content at time t+dt
$m_{_W}$	•	Mass of water evaporated from the product
M _W	•	Moisture content wet basis
MW	:	Molecular weight of betacyanin
Ν	:	Normal force
Ν	:	Number of experiments
n	:	Number of repetition
N ₁	:	Number of dishes retained in the first dilution
N ₂	:	Number of dishes retained in the second dilution
NIR	:	Near infrared
nm	:	Nanometre
NO - NC	:	Normally Open - Normally Close
$p_{_B}$:	Bulk density
PC	:	Phenolic content
рН	:	Potential of hydrogen
PRESS	:	Prediction Error Sum of Squares
РТ	:	Platinum resistant Temperature sensor
$p_{_T}$:	True density
PTFE	:	Poly Tetra Fluoro Ethylene
p value	:	Probability value
PZT	•	Piezoelectric transducer
Q	:	Sensible heat
R	:	Rotational speed of heater
\mathbb{R}^2	:	Coefficient of correlation
RH	:	Relative humidity

RMSE	:	Root mean square error
RPM	:	Revolutions Per Minute
RSM	:	Response Surface Methodology
S	:	Second
S	:	Sonication time
S	:	Surface area
S. enteritidis	:	Salmonella enteritidis
SEC	:	Specific Energy Consumption
SMER	:	Specific Moisture Extraction Rate
SMPS	:	Switched Mode Power Supply
SS	:	Stainless Steel
SSE	:	Sum of Square Error
Т	:	Temperature
$\Delta T/\Delta x$:	Temperature gradient
T_{f}	:	Final drying temperature
T _i	:	Inlet air temperature
TPC	:	Total Plate Count
TSS	:	Total Soluble Solids
US	:	Ultrasound
US-C	:	Ultrasound assisted Cabinet
US-HP	:	Ultrasound assisted Heat Pump
US-IR	:	Ultrasound assisted Infrared
V	:	Air flow rate
V	:	Velocity
V	:	Volt
V	:	Volume
V _a	:	Volumetric air flow rate
VFD	:	Variable frequency drive

W	:	Weight
W	:	Watt
wb	:	Wet basis
W _f	:	Weight of sample after drying
w _i	:	Weight of sample before drying