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CHAPTER II 

REVIEW OF LITERATURE 

This chapter critically reviews various topics like climate, climate change, 

climate scenarios and climate models, crop simulation models, and how climate 

change impacts irrigation water requirement, yield, crop water productivity, and 

food security. Also specifically reviews various research conducted on the impact 

of climate change on the irrigation water requirement and crop water productivity 

of rice. 

2.1. Climate, climate change and its causes 

Climate refers to the long-term patterns and trends in weather conditions, 

including temperature, precipitation, wind, and other factors, in a specific region 

or worldwide. Climate is determined by complex interactions between the 

atmosphere, oceans, land, and ice. It is influenced by factors such as solar 

radiation, greenhouse gases, and natural variations in the Earth's systems (CCKP, 

2021). 

Climate change refers to the long-term shift in global or regional climate 

patterns, commonly associated with increased global temperatures since the mid-

20th century (IPCC, 2021). It is characterized as altering climate patterns, 

primarily driven by releasing greenhouse gases from both natural processes and 

human actions. Human activities have already resulted in approximately 1.0 °C of 

global warming beyond pre-industrial levels, and this is projected to reach 1.5 °C 

between 2030 and 2052 if current emission rates continue. In 2018, the world 

witnessed 315 instances of natural disasters largely associated with climatic factors 

(Fawzy et al., 2020). 

Climate change has significant impacts on ecosystems, economies, and 

societies around the world. These impacts include more frequent and severe 

heatwaves, droughts, floods, storms, rising sea levels, loss of biodiversity, and 

changes in agriculture and food production. Addressing climate change requires a 

coordinated global effort to reduce greenhouse gas emissions and transition to a 
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low-carbon economy, while adapting to the changing climate conditions (Xiao et 

al., 2020).  

Climate change exerts detrimental effects across various facets of human 

existence, posing a substantial threat to the global water supply (Kim et al., 2016). 

Furthermore, climate change disrupts water-dependent sectors such as agriculture, 

hydropower, tourism, and navigation, with ramifications extending worldwide 

(Babel et al., 2011). 

Both natural and human activities cause climate change. Human activities, 

such as burning fossil fuels and deforestation, release greenhouse gases like carbon 

dioxide into the atmosphere, trapping heat and leading to global warming. Natural 

factors like volcanic eruptions also play a role. Agriculture, particularly the 

livestock sector, contributes significantly to greenhouse gas emissions. 

Understanding these factors is crucial for predicting and mitigating the impacts of 

climate change. Efforts to reduce emissions include improving crop management 

and reducing meat consumption (Kahrl et al., 2010, Popp et al., 2010, Montzka et 

al., 2011, Groenigen et al., 2011, O’Mara, 2011, Lesschen et al., 2011, Soltani et 

al., 2013, Stern  and Kaufmann, 2014) 

2.2.Effects of climate change 

Climate change is causing a range of impacts on the Earth's natural systems 

and human societies. Li et al. (2022) reported that one of the most significant 

effects of climate change is rising temperatures (Fig. 2.1). As greenhouse gas 

concentrations continue to increase, it is expected that maximum temperatures will 

increase (Fig. 2.2a), while minimum temperatures will also rise (Fig. 2.2b), 

resulting in an overall increase in temperature variability. In terms of annual 

rainfall, many areas are expected to experience more frequent and intense rainfall 

events (Fig. 2.2c), leading to more flooding, while other areas may experience 

prolonged droughts due to changes in precipitation patterns. Additionally, the 

amount and intensity of solar radiation (Fig. 2.2d) reaching the Earth's surface may 

also be affected, with some areas potentially experiencing more intense heatwaves 

and solar radiation exposure (Ansari et al., 2021). As the global temperature 

increases, the polar ice caps and glaciers are melting at an accelerated rate, leading 
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to a rise in sea levels around the world (Fig. 2.3). Over the last century, sea levels 

have been on the rise, and in recent decades, this increase has accelerated. By 2016, 

the global sea level had exceeded the 1993 average by 3.2 inches (82 mm), marking 

the highest annual average recorded by satellites since 1993 (Lindsey, 2021). The 

rate of sea level rise is expected to accelerate in the coming decades, with 

projections suggesting that the global sea level could rise by several feet by the 

end of the century. 

 

 

 

Additionally, climate change is also causing changes in the growing season 

and water availability, leading to food and water scarcity in some regions. Thawing 

permafrost is another significant consequence of climate change, as it releases large 

amounts of carbon dioxide and methane into the atmosphere. Furthermore, climate 

change is causing longer, more frequent and more intense fire seasons, exacerbating 

the loss of biodiversity and wildlife habitats. In summary, climate change is a global 

issue that requires immediate action to mitigate its impacts and reduce greenhouse 

gas emissions (Abbass et al., 2022). 

Fig. 2.1. Global surface temperature changes relative to 1850-1900 (Li et 

al,2022) 
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 Fig. 2.3 Global sea level change since 1880 (Hogarth et al., 2021) 

2.3. Climate models 

Climate models are essential tools for studying and simulating climate 

behavior and their complex interactions. These models come in various types, with 

Fig. 2.2. Future climate predictions under different scenarios for (a) maximum 

temperature, (b) minimum temperature, (c) annual rainfall, and (d) solar 

radiation ( Kundu et al., 2017) 
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the most intricate ones being atmosphere–ocean general circulation models. These 

models consist of components replicating the interactions of the atmosphere, land, 

sea, and ocean ice. They divide the environment into numerous matrix cells and 

incorporate biophysical and land-surface processes. Regional climate models, on 

the other hand, utilize higher resolution to provide more precise insights into 

specific geographical areas, often as small as subcontinents. These models can be 

combined with various integrated assessment models, serving a valuable role in 

exploring significant vulnerabilities (Moss et al., 2010). 

Various climate models exist, among them are Earth System Models (ESMs), 

are advanced computer models designed to replicate the interactions between the 

earth's atmosphere, oceans, land surface, cryosphere, and biogeochemical cycles 

(Flato, 2011). In the last hundred years, climate modeling has improved by adding 

more scientific knowledge about how the earth's climate works into these models. 

Fig. 2.4 depicts the timeline of when different climate system components became 

routinely integrated into global climate model simulations (Bellenger et al., 2014). 

 

Fig. 2.4 A climate modeling time line (Hayhoe et al., 2017) 

2.3.1. Global climate models  

Global Climate Models (GCMs) often named as General Circulation 

Models, are advanced tools currently available to depict the physical processes 

occurring within the atmosphere, ocean, cryosphere, and on land. These models are 

employed to make virtual projections of environmental changes for future periods 

(IPCC, 2014) and are used to forecast future climate scenarios based on potential 

anthropogenic activities using equations of motion. GCMs can simulate climate 

alterations resulting from minor variations in specific conditions, such as changes 

in the solar constant or physical parameters like greenhouse gas concentrations 

(Subramanian et al., 2023). These models are grounded in the scientific principles 
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of the Navier-Stokes Equation, which describes oceanic and atmospheric processes 

from a thermodynamic perspective. Previously, Atmospheric GCMs (AGCMs) 

focus on climate and land components, while Oceanic GCMs (OGCMs) addressed 

oceanic aspects. A more recent approach to atmospheric modeling involves 

combining AGCMs and OGCMs to create Atmospheric Oceanic GCMs 

(AOGCMs). GCMs are recognized as the most reliable instruments for predicting 

the pace of climate change. However, their primary limitations include poor 

resolution, insufficient detailing of atmospheric and oceanic processes, an inability 

to represent the environment fully, and incapacity to simulate cloud mechanisms 

(Krishnan et al., 2007). Some of the GCMs used in India (Raju and Kumar, 2015) 

and their details are shown in Table 2.1. 

Table. 2.1 List of Global Circulation Models 

Model Name 
 

Institution and Country Resolution 

BCC-CSM2-MR Beijing Climate Centre (BCC) and 
China Meteorological Administration 
(CMA), China 

1.1° × 1.1° 

CanESM5 Canadian Earth System Model, 
Canada 

2.81° × 2.81° 

ACCESS-ESM1-5 Australian Commonwealth Scientific 
and Industrial Research Organisation 
(CSIRO) and the Australian Bureau of 
Meteorology (BoM) Earth System 
Model 

1.88° × 1.88° 

CNRM-CM6_HR Centre National de Recherches 
Météorologiques-Centre Européen de 
Recherches et de Formation Avancée 
en Calcul Scientifique, France 

0.5° × 0.5° 

FGOALS-g3 Flexible Global Ocean-Atmosphere-
Land System model Grid-point version 
3 

2° × 2.3° 

INM-CM5-0 Numerical Mathematics, Russian 
Academy of Science, Moscow 
119991, Russia 

2° × 1.5° 

IPSL-CM6A-LR Institut Pierre-Simon Laplace, France 2.5° × 1.3° 
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MPI-ESM1-2-LR Max Planck Institute for Meteorology, 
Low Resolution, Germany 

0.9° × 0.9° 

MPI-ESM1-2-HR Max Planck Institute for Meteorology, 
High Resolution, Germany 

1.9° × 1.9° 

TaiESM Research Centre for Environmental 
Changes, Taiwan 

1.3° × 1° 

2.3.2. Regional Climate Models (RCMs) 

Unlike GCMs, which simulate the entire earth's climate system, RCMs 

focus on modeling climate processes at a regional scale. They provide more detailed 

information about climate variables such as temperature, precipitation, and wind 

patterns for specific regions, typically at higher spatial resolutions than GCMs. 

RCMs are often used to downscale global climate model output to provide more 

localized climate projections, making them valuable tools for assessing climate 

impacts on smaller scales, such as individual countries, regions, or river basins 

(Feser et al., 2011). 

Rajib and Rahman (2012) conducted a study using the Regional Climate 

Model (RCM) called PRECIS to develop future surface temperature projections for 

Bangladesh from 2011 to 2100. PRECIS is a grid point model with 19 levels and 

can downscale to a 25 km resolution. Hence, a high-resolution limited area 

Regional Climate Model (RCM) can produce reasonably appropriate projections 

for climate-scenario generation on a country scale. If the domain is too large, the 

model's flow may deviate from the driving dataset. At the same time, a domain that 

is too small may limit the model's ability to generate accurate responses to local 

climate conditions.  

2.4.Downscaling of climate models 

Downscaling is a technique to derive high-resolution climate information for 

specific regions from the low-resolution output of global climate models (GCMs). 

This is because GCMs operate at a coarse resolution of several hundred kilometers 

(100-300 km × 100-300 km), which cannot capture local and regional climate 

variability. Many impact models require data of finer scales 50 kms or less. 

There are two main types of downscaling techniques: statistical and 

dynamical downscaling. Statistical downscaling involves developing empirical 
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relationships between the large-scale climate variables simulated by GCMs and 

the local/regional climate variables of interest based on observed historical data. 

This technique is relatively simple and computationally efficient. Still, it assumes 

that the relationships between the large-scale and local/regional variables will 

remain unchanged in the future, which may not be true under changing climate 

conditions (Zhou et al., 2023, Tang et al., 2016). 

Dynamical downscaling develops finer regional climate models (RCMs) 

within coarser resolution GCMs. On the other hand, uses RCMs to simulate the 

finer-scale processes that are not resolved by GCMs, such as local topography, 

land cover, and atmospheric dynamics. RCMs are driven by the boundary 

conditions provided by GCMs and simulate the interaction between the large-scale 

climate processes and the local/regional processes, producing high-resolution 

climate projections for specific regions (Tang et al., 2016). This technique is 

computationally expensive and requires detailed input data. Still, it is more 

physically realistic and can capture the local/regional variability and extreme 

events that are important for impact assessments and adaptation planning (Walton 

et al., 2020). 

2.5.Bias Correction of climate model output 

Bias correction methods are used to correct systematic errors or biases in 

climate model output. These biases can arise due to various reasons, such as the 

coarse resolution of the model, inaccurate parameterizations, or errors in the input 

data. Biases in climate model output can lead to incorrect conclusions when 

analyzing the impact of climate change on a specific region or sector. 

The lack of reliable information on geophysical processes gives rise to 

assumptions in developing GCMs in terms of parameters and experimental 

formulations. Consequently, GCMs are not devoid of inaccuracies and fail to 

precisely replicate climatic factors due to the disparities between observed and 

simulated climatic variables across all GCMs. This divergence is commonly 

referred to as bias. Eliminating bias from GCM outcomes is crucial for enhancing 

the accuracy of predicting future hydrologic and climatic conditions (Salvi et al., 
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2011). Bias is the systematic distortion of statistical results from the expected value 

(Teng et al., 2015). 

Challenges, such as the unavailability of daily climate data at sufficiently high 

spatial resolution for future studies, create impediments for comprehensive small-

scale analyses of climate change impacts. The utilization of GCM outputs in 

regional impact assessments is hindered by biases inherent in GCMs. Therefore, 

correcting biases becomes crucial to validate the meaningful applications of these 

GCM outputs (Murphy, 2000). Statistical methods have been identified as a 

straightforward approach to bias correction (Hayhoe et al., 2007). Moreover, this 

correction reduces the average error and minimizes the maximum error in 

simulated daily or monthly mean values. 

The five types of bias correction methods are Quantile mapping, Delta 

change, Linear scaling, Local intensity scaling, and Power transformation (Smitha 

et al., 2018)  

Quantile mapping: This method involves adjusting the model data distribution 

to match the observed data distribution. The mapping function is typically 

determined by comparing the cumulative distribution functions of the modeled and 

observed data over a reference period. This method is effective for correcting 

biases in precipitation data (Thrasher, et al., 2012, Enayati et al., 2021 and 

Grillakis and Koutroulis, 2017) 

Delta change: This method involves adding or subtracting a constant value 

(delta) to the model output to match the observed data. The delta value is typically 

determined by comparing the mean or median of the modeled and observed data 

over a reference period. This method is useful for correcting biases in temperature 

data (Raty et al., 2014). 

Linear scaling: This method involves scaling the modeled data using a linear 

function to match the observed data. The scaling factors are typically determined 

by comparing the mean or median of the modeled and observed data over a 

reference period. This method is useful for correcting biases in temperature and 

precipitation data (Shrestha et al., 2017; Aqilah, 2018). 
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Local intensity scaling: This method involves scaling the modeled data using 

a non-linear function to match the observed data. The scaling factors are typically 

determined by comparing the frequency and intensity of extreme events in the 

modeled and observed data over a reference period. This method is useful for 

correcting biases in extreme precipitation events transformation (Smitha et al., 

2018). 

Power transformation: This method involves applying a power transformation 

to the modeled data to match the observed data. The transformation function is 

typically determined by comparing the probability distribution functions of the 

modeled and observed data over a reference period. This method is useful for 

correcting biases in precipitation data transformation (Smitha et al., 2018). 

2.6.Climate Scenarios  

Global warming is caused primarily due to increase in carbon dioxide 

emission into the atmosphere from fossil fuel burning and deforestation activity. 

The increase or decrease in carbon dioxide concentration in the atmosphere might 

influence the global and local climatic conditions. Future GHG emissions are the 

product of very complex dynamic systems, determined by driving forces such as 

demographic development, socioeconomic development, and technological change 

(IPCC, 2000). Their future evolution is highly uncertain. Scenarios are alternative 

images of how the future might unfold an area and appropriate tool with which to 

analyze how driving forces may influence future emission outcomes and to assess 

associated uncertainties (IPCC. 2000). These scenarios are projections of future 

climate conditions based on assumptions about greenhouse gas emissions, 

atmospheric concentrations, and other factors. Analysts use these scenarios to 

assess future vulnerability to climate change and help to inform decisions about 

adaptation and mitigation strategies. Thus, IPCC produces climate scenarios and 

projections in their assessment reports, which policymakers, researchers, and 

stakeholders widely use. The SRES scenarios were developed in 2000 and used in 

the IPCC's Fourth Assessment Report in 2007, while the RCPs were developed in 

2014 and used in the IPCC's Fifth Assessment Report in 2014 and 2015. The SSP 
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scenarios were developed in 2016 and used in the IPCC's Sixth Assessment Report 

in 2021. 

According to the fifth Assessment Report (AR5) in 2014, IPCC introduced 

four greenhouse gas concentration trajectories known as Representative 

Concentration Pathways (RCPs). These pathways replaced the Special Report on 

Emissions Scenarios (SRES) from 2000 onwards. The four RCPs, namely RCP-

2.6, RCP-4.5, RCP-6.0, and RCP-8.5, encompass a broad spectrum of potential 

changes in future anthropogenic (human-induced) greenhouse gas (GHG) 

emissions. Their primary objective is to depict the atmospheric concentrations of 

these gases over time. Each RCP follows a distinct trajectory. RCP 2.6 indicates 

the highest global annual GHG emissions (measured in CO2-equivalents) between 

2010 and 2020, with a substantial decrease in emissions thereafter. In RCP 4.5, 

emissions peak around 2040 and subsequently decline. RCP 6 exhibits the highest 

emissions approximately in 2080, followed by a reduction. Conversely, RCP 8.5 

foresees a continual increase in emissions throughout the 21st century 

(Meinshausen et al., 2011). 

IPCC, in the sixth assessment report, has developed a new set of scenarios 

called the Shared Socioeconomic Pathways (SSPs), which combine assumptions 

about greenhouse gas emissions and socioeconomic factors such as population 

growth, economic development, and technological change. Shared Socioeconomic 

Pathways (SSPs), developed collaboratively by an international team of climate 

scientists, economists, and energy systems modelers, serve as a toolkit for the 

climate change research community, enabling integrated, multi-disciplinary 

analysis. These pathways outline conceivable global developments that could pose 

different challenges for climate change mitigation and adaptation in the future 

(Van Vuuren et al., 2011). They are based on five narratives depicting alternative 

socio-economic developments, including sustainable development, regional 

rivalry, inequality, fossil-fueled development, and middle-of-the-road 

development (Riahi et al., 2017). The SSPs provide a range of scenarios for future 

socioeconomic and environmental conditions and are used in conjunction with the 

RCPs to project future climate change impacts. 
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SSPs are detailed frameworks used in climate change studies, as highlighted 

by Auer et al., 2021. They describe socioeconomic and environmental trends 

globally and in major world regions throughout the 21st century. These pathways 

include both qualitative and quantitative information, allowing us to distinguish 

between different SSPs in terms of their challenges for reducing emissions and 

adapting to climate change. Additionally, SSPs incorporate key data used as input 

by global models that predict energy, economy, land use, and climate impacts, as 

noted by Riahi et al., 2017. They consider factors like future population growth, 

economic development, and global connectivity. It's important to note that SSPs 

don't specify exact technological solutions or emissions scenarios. They also don't 

include policies directly aimed at addressing climate change or their effects on 

other factors, as explained by Kriegler et al., 2014.  

Table 2.2 Overview of RCP scenarios by Van Vuuren et al. (2011) 

Scenarios 
Radiative 

Forcing 

CO2 

Equiv 

(ppm) 

Temperature 

Anomaly (C) 
Pathway 

SRES 

Temperature 

Anomaly 

Equivalent 

RCP 8.5 

Rising 
Radiative 
Forcing 
Pathway 
leading to 8.5 
W/m2 in 
2100 

1370 4.9 Rising SRES A1F1 

RCP 6.0 

Stabilization 
without 
overshoot 
pathway to 
6.0 W/m2 at 
stabilisation 
after 2100 

850 3.0 

Stabilisat
ion 
without 
overshoot 

SRES B2 
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RCP 4.5 

Stabilization 
without 
overshoot 
pathway to 
4.5 W/m2 at 
stabilisation 
after 2100 

650 2.4 

Stabilisat
ion 
without 
overshoot 

SRES B1 

RCP 2.6 

Peak in 
Radiative 
Forcing at ~3 
W/m2 before 
stabilisation 
and decline 

490 1.5 
Peak and 
decline 

None 

Table 2.3 Overview of SSP scenarios by Leimbach et al. (2023) 

SSP Scenario Description 

SSP1 

(Sustainability) 

Emphasizes sustainability, equality, and environmental 

protection. Assumes rapid economic growth, low population 

growth, and increased emphasis on social equality. 

SSP2 (Middle 

of the Road) 

Represents a world where current trends continue with no 

major shifts toward sustainability or inequality. Assumes 

medium population growth, moderate economic 

development, and fragmented governance. 

SSP3 

(Regional 

Rivalry) 

Envisions a fragmented world with high regional disparities, 

limited international cooperation, and unsustainable resource 

use. Assumes high population growth, slow economic 

development, and conflict-prone governance. 

SSP4 

(Inequality) 

Focuses on a highly unequal world with fragmented 

governance and limited global cooperation. Assumes rapid 
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economic growth in some regions and stagnation or decline in 

others, leading to high income inequality. 

SSP5 (Fossil-

Fueled 

Development) 

Assumes high emissions and limited climate action, resulting 

in a world where fossil fuels remain dominant. Envisions 

rapid economic growth, high population growth, and weak 

environmental policies. 

2.7.Crop growth simulation models  

Crop simulation models are used to evaluate the impact of climate change on 

crop productivity, grain yield and water productivity. Several models are available 

for this purpose, which includes AquaCrop, DSSAT, STICS, APSIM, and 

INFOCROP. These models use a combination of climate and soil data, crop 

management information, and physiological parameters to simulate crop growth 

and yield under different environmental conditions. They allow researchers and 

farmers to explore different scenarios, such as changes in temperature, rainfall, and 

irrigation, and evaluate how these changes might affect crop production (Rauff. 

and Bello, 2015).  

AquaCrop, for example, is a model designed to simulate crop water use and 

yield under water-limited conditions, making it particularly useful for arid and 

semi-arid regions. DSSAT is a widely used model that can simulate the growth, 

development, and yield of over 40 crops. STICS is a model that can simulate the 

impact of climate change on crops, soil, and water, while APSIM can simulate the 

interactions between crops, soil, water, and nutrients (Kherif et al., 2022). 

INFOCROP is another model that can simulate the growth, development, and yield 

of various crops under different environmental conditions (Aggarwal et al., 2006). 

These models provide valuable insights into the potential impact of climate change 

on crop productivity and can help inform decision-making related to agricultural 

management practices, including crop selection, irrigation strategies, and fertilizer 

application (Gul et al., 2020). 

2.7.1. AquaCrop Model 

AquaCrop is a crop growth simulation model developed and supported by the 

Food and Agriculture Organization (FAO). Based on biophysical processes 
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(Steduto et al., 2009), the AquaCrop model takes into account a continuous 

structure of plants, soil, and atmosphere (Raes et al., 2018). It has a user-friendly 

interface and requires limited data. AquaCrop is designed to simulate the effects of 

water stress on crop growth and yield, with a focus on climate change, water, and 

crop yield (Raes et al., 2009). 

AquaCrop simulates the potential yields of herbaceous crops by considering 

the amount of water transpired (Steduto et al., 2012). The inputs to AquaCrop 

include climate data, soil properties, crop management practices, and crop 

characteristics, such as variety, planting date, and planting density. The model also 

requires information on the initial soil water content and the irrigation schedule, if 

applicable (Zhang et al., 2022). 

The outputs of AquaCrop include estimates of crop yield, biomass production, 

evapotranspiration, soil moisture, and water use efficiency. The model can also 

provide information on the timing and severity of water stress, which can be used 

to evaluate the effectiveness of different irrigation strategies and water 

management practices (Hsiao et al., 2009). AquaCrop also calculates the water 

balance of the crop-soil system, taking into account precipitation, irrigation, 

evapotranspiration, and runoff. The model simulates the growth of different crops, 

including cereals, vegetables, fruits, and forage crops, considering different growth 

stages such as germination, vegetative growth, and reproductive growth (Feng et 

al., 2022). 

In addition, AquaCrop simulates the response of crops to water stress, 

considering different levels of stress and the timing of stress. The model can be 

used to evaluate the effects of different irrigation strategies and water management 

practices on crop yields and water use efficiency. It is a field-scale model that 

calculates irrigation water requirements (IWR) by water balance (Raes et al., 

2014). 

2.7.2. Application of AquaCrop model in crop yield simulation studies 

AquaCrop is a model for predicting grain yield and biomass response to 

water stress in various field crops, requiring fewer input data than other models. 

Studies have affirmed the model's ability to accurately simulate crop grain yield 
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and biomass across diverse global locations, enhancing its usability at different 

sites (Deb et al., 2015; Shrestha et al., 2016).  

 Abedinpour et al. (2012) conducted a study to evaluate the performance of 

the AquaCrop model for maize cultivation in a semi-arid environment in India. 

The study involved experiments with different irrigation and nitrogen fertilizer 

regimes. Calibration and validation of AquaCrop were conducted using 

experimental data from 2009 and 2010. The results showed that AquaCrop's 

performance closely matched the experimental data, particularly under full 

irrigation and 25% deficit irrigation with normal nitrogen fertilizer. 

Zeleke and Nendel (2020) conducted a field experiment in Wagga Wagga, 

Australia, for two years (2013 and 2014), in two spring wheat varieties (EGA 

Gregory and Livingston) and two soil water regimes (rainfed and supplemental 

irrigation) using FAOs AquaCrop model version 4.0. The model was calibrated 

and validated for various parameters, including crop canopy cover, biomass, soil 

water content, and grain yield. The root-mean-square error (RMSE) for grain yield 

and biomass was 0.293 and 2.2 t ha−1, respectively, while the RMSE for rootzone 

soil water content was 25 mm. The validated model was used to analyze the impact 

of sowing dates and irrigation timings on grain yield and water productivity. Grain 

yield and water productivity decreased with delayed sowing dates, and the 

application of supplemental irrigation to mid-May sown wheat resulted in higher 

yields than mid-April and mid-June sowings. Additionally, applying irrigation in 

both September and October improved yield and water productivity compared to 

applying irrigation only in October. Off-season practices like mulching and pre-

irrigation had a 68% greater impact on yield in low-rainfall years than in wet years. 

Zhang et al. (2021) conducted research on evaluation of saline water 

irrigation on cotton growth and yield using the AquaCrop crop simulation model. 

The study focused on evaluating the feasibility of using brackish water for 

irrigation to address freshwater shortages and sustain food production, specifically 

for cotton crops in Hebei's lowland plain. Four years of experiments from 2012 to 

2015 tested various salinity levels in irrigation water. The AquaCrop model can 

simulate cotton growth and salinity dynamics under saline water irrigation and 
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accurately simulate crop parameters like canopy cover, soil moisture, and biomass 

under saline water irrigation. Scenario simulations revealed that high and normal 

rainfall years facilitated salt drainage from the soil, while salt accumulation 

occurred in low rainfall years. The study concluded that soil salinization poses a 

real risk to cotton production under saline water irrigation. 

The study conducted by Stričević et al., 2023 evaluates the performance of 

the AquaCrop model in simulating yield, biomass, and water requirements of 

common beans under various irrigation treatments and sowing periods to achieve 

high yield productivity. The model was calibrated using two years of experimental 

data from the Syrmia region in Serbia, considering three sowing periods and three 

irrigation levels and the results indicate that the model accurately predicts common 

bean yield, biomass, canopy cover, and water requirements, with statistical indices 

for yield and biomass indicating good model performance. The model effectively 

predicted irrigation requirements for full and deficit irrigation scenarios when 

testing different irrigation strategies. Specifically, it accurately estimated the 

irrigation water needs for full and two deficit irrigation strategies, performing well 

in predicting irrigated yield under varying sowing periods and irrigation strategies. 

2.7.3. Application of AquaCrop in crop water productivity 

The Aquacrop model enables the simulation of water management effects 

on yield, offering insights to implement strategies that enhance overall water 

productivity (Saad et al., 2014).  The study by Mansour et al.(2020) aimed to 

assess the impact of pulse drip irrigation on maize growth using the AquaCrop 

model. They tested two discharge rates (6 lph and 10 lph) and different water stress 

levels (80%, 65%, 50% of evapotranspiration) during the 2018 growing season in 

Egypt. Results showed that the efficiency of the irrigation system was higher with 

a discharge rate of 6 lph, and by decreasing the discharge rate, overall efficiency 

was improved. Grain and biomass yields were high, with a discharge rate of 10 lph 

and a water stress level of 50%. Water productivity was also high with a discharge 

rate of 6 lph and a water stress level of 80%. Hence, using a water stress level of 

50% is recommended to conserve water under pulse drip irrigation with a 

discharge rate of 6 lph. 
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 Adeboye et al. (2020) investigated the modeling of evapotranspiration, soil 

water storage, and water productivity of rainfed soybeans under different nitrogen 

fertilizer levels in Nigeria using the FAO AquaCrop model. Field experiments 

were conducted during the 2015 and 2016 rainy seasons, with five nitrogen levels 

and two soybean varieties. AquaCrop was calibrated using 2015 data and validated 

using 2016 data. The model accurately simulated canopy cover, soil water storage, 

evapotranspiration, and seed yield, with low error rates. Despite overestimating 

aboveground biomass, the model reliably predicted seed yields under various 

nitrogen levels. This suggested the suitability of AquaCrop model for predicting 

soybean productivity and optimizing resource use in tropical farming systems.  

The study by Pirmoradian et al. (2020) aimed to simulate the water 

productivity of paddy using the AquaCrop model in both humid and semiarid 

regions of Iran, which is crucial for optimizing irrigation management and 

enhancing water productivity in rice production. Field experiments were 

conducted with different rice cultivars and irrigation treatments for two 

consecutive years, one in a semi-arid climate (Kooshkak) and the other in a humid 

climate (Rasht). The simulation results showed a relative root mean square error 

(RRMSE) of grain yield simulation ranging from 2.28% to 15.09%. Water 

productivity based on transpiration (WPT) and water productivity based on 

evapotranspiration (WPET) varied significantly with irrigation treatments, with 

greater ranges observed in the dry climate compared to the wet climate. 

Continuous flooding resulted in higher WPT and WPET averages in both humid 

(1.21 kg m−3 and 0.82 kg m−3, respectively) and dry (1.26 kg m−3 and 0.76 kg m−3, 

respectively) climates, highlighting the impact of evaporation losses on decreasing 

water productivity in dry climates. Notably, continuous flooding treatments 

exhibited the highest evapotranspiration (ET), with evaporation rates 88% higher 

in dry than in humid climates. 

Zhang et al. (2022) conducted a study that focused on understanding how 

irrigation affects crop yield and water productivity for winter wheat over 60 years 

of weather data (1961—2020). The study used AquaCrop model to simulate 

different irrigation scenarios. Results showed that reference evapotranspiration 
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(ET0) remained stable, but seasonal precipitation during the wheat growing cycle 

decreased, and the risk of drought increased. Despite this, crop yield and water 

productivity increased steadily with higher temperatures. Irrigation significantly 

improved yield and water productivity compared to rainfed conditions. The study 

demonstrated AquaCrop model’s reliability in simulating crop growth and 

production under water deficit conditions and provided guidance for optimizing 

irrigation schedules.  

2.8. Climate change impact on agriculture 

Rising temperatures, changes in precipitation patterns, and extreme weather 

events affect crop yields, soil health, and water availability. In some regions, 

climate change is leading to increased frequency and severity of droughts, floods, 

and heatwaves, damaging crops and disrupting food systems. Additionally, climate 

change is causing the spread of new pests and diseases, which threaten crops and 

livestock (Malhi et al., 2021).  

2.8.1. Climate change impact on water availability 

According to a study by Lehner et al. (2018), climate change is likely to 

reduce water availability in the regions of the Mediterranean, Southern Africa, 

Middle East, North Africa, South Asia, Southern Europe, and the southwestern 

United States in the coming years. Udall et al. (2018) projected a 6-7% reduction 

in streamflow by 2050 in the Colorado River Basin, indicating the anticipated 

impact of climate change. This reduction in water availability will have significant 

consequences for agriculture, ecosystems, and human communities that rely on the 

Colorado river for their water supply. 

Konapala et al. (2020) explored the impact of climate change on water 

availability by analyzing seasonal hydroclimatic patterns using a non-parametric 

statistical approach. They classified global land regions into nine regimes based 

on late 20th-century precipitation means and seasonality. Their analysis revealed 

that four regimes exhibited increased precipitation variation, while five showed 

decreased evaporation variation alongside rising mean precipitation and 

evaporation levels. The study projected increased seasonal precipitation variation 

in already “highly variable regimes” leading to a trend of "seasonally variable 
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regimes” becoming more variable. Conversely, regions with low precipitation 

seasonality experienced heightened wet-season precipitation. These findings 

highlight the complex interplay between seasonal and annual precipitation and 

evaporation patterns, shedding light on potential shifts in water availability due to 

climate change. 

2.8.2 Climate change impacts on irrigation water requirement 

Climate change can increase irrigation water demand in most regions of the 

world, particularly in South Asia, North Africa, and the Middle East. By 2050, due 

to climate change, irrigation water demand could increase by 11-14% globally 

(Wada et al., 2017). By 2050, global food demand is expected to increase by 60%, 

which will put significant pressure on irrigation water resources, particularly in 

water-stressed regions (FAO, 2017). Climate change will likely reduce the 

productivity of key crops, including rice, wheat, and maize, which could increase 

the land and water needed to produce the same amount of food (Zhao et al., 2018). 

Climate change is expected to increase irrigation water demand by up to 20% in 

some regions of the country, including California. Agriculture accounts for around 

70% of global freshwater withdrawals, and as climate change alters precipitation 

patterns, irrigation water availability could become more unpredictable (UN, 

2021). 

Boonwichai et al. (2018) studied how climate change affects irrigation water 

requirement (IWR), rice yield, and crop water productivity (CWP) for Thai 

Jasmine rice in Thailand's Songkhram River Basin. They used the DSSAT crop 

simulation model with five Regional Circulation Models (RCMs) under RCP4.5 

and RCP8.5 scenarios. The findings indicate that maximum and minimum 

temperatures are projected to increase by 1.9°C under RCP8.5 by the 2080s. 

Rainfall may decrease in the 2030s and increase in the 2055s and 2080s, but 

rainfall during the rice reproductive phase could decrease. Changes in rainfall may 

affect rice yield rather than temperature, potentially causing water stress. Rising 

temperatures could increase crop water usage, and high rainfall alone might not be 

enough. IWR is expected to rise in the future. By the 2080s, rainfed rice yield could 

decrease by 14% under RCP4.5 and 10% under RCP8.5. Due to increased water 
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use and reduced yield, CWP could decrease by 32% under RCP4.5 and 29% under 

RCP8.5 by 2080s. These findings were useful for planning adaptation strategies to 

address water stress and enhance rice yield and CWP in the basin under climate 

change. 

2.8.3 Climate change impacts on crop yield 

Bhuwaneswari et al. (2014) investigated the impact of climate change on rice 

crops and developed adaptation strategies for the western zone of Tamil Nadu. The 

CERES-Rice model in the DSSAT was used to assess the impact of climate change 

on rice and develop adaptation strategies to sustain rice production. The model 

results showed that there was a reduction in yield with an increase in temperature. 

To manage the water crisis under changing climatic conditions, different methods 

of cultivation viz., Transplanted Rice Conventional (TRC) method, Direct Sown 

Rice (DSR), Alternate Wetting and Drying Method (AWD), System of Rice 

Intensification (SRI) and Aerobic Rice Cultivation (ARC) were simulated and 

adaptation strategies were developed. 

In a study conducted by Goswami et al. (2016), the specific repercussions of 

climate change on rice yield variability in the Jorhat district of Assam were 

investigated across various Representative Concentration Pathways (RCPs). The 

findings revealed that the anticipated variations in grain yield, compared to the 

observed mean yield from 2009 to 2013, ranged from -12.7% to -43.4% across all 

scenarios and transplanting dates considered. Ding et al. (2020) emphasized the 

efficacy of adjusting sowing dates as a more effective strategy in mitigating the 

effects of climate change in China. 

A recent study by Aswathi et al. (2022) found that rice crops have shown a 

continuous decrease in yield during the near, mid, and end centuries of the 21st 

century due to climate change, as projected under two different greenhouse gas 

emissions scenarios (RCP 4.5 and RCP 8.5). This highlights the urgent need for 

adaptation measures, such as the development of climate-resilient crops and 

sustainable farming practices to mitigate the negative impact of climate change on 

crop yields and ensure food security in the future. 
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Lotfi et al. (2022) investigated the impact of climate change on the yield and 

length of dryland wheat phenological stages in western Iran, focusing on rainfed 

cultivation management. Two downscaling models, SDSM and LarsWG, were 

employed to simulate climate conditions over the next 30 years. AquaCrop and 

DSSAT models were utilized to model performance and phenological stages, 

considering three RCP climate scenarios (2.6, 4.5, and 8.5). Results indicated that 

the AquaCrop model outperformed DSSAT, demonstrating higher coefficient of 

determination values and lower root mean square error (RMSE) values. 

Specifically, AquaCrop exhibited coefficient of determination values of 0.86, 0.64, 

and 0.89 in Kermanshah, Sanandaj, and Ilam stations, respectively, with 

corresponding RMSE values of 198.6, 274.6, and 192 kg/ha. In contrast, DSSAT 

showed coefficient of determination values of 0.90, 0.11, and 0.82, with RMSE 

values of 219.9, 288.1, and 238 kg/ha, respectively. Generally, the results indicated 

lower yields in scenarios of rising temperature and carbon dioxide levels. The 

SDSM downscale model showed the highest dryland wheat yields mainly in 

scenarios 4.5 and 8.5, whereas the LarsWG model indicated the lowest yields in 

these scenarios. These findings underscore the significance of downscaling and 

crop model selection in determining climate change impact on agricultural yields. 

2.8.4 Climate change impacts on crop water productivity 

Climate change can have a significant impact on crop water productivity, 

which is a measure of how efficiently crops convert water into yield. Higher 

temperatures, changes in precipitation patterns, and extreme weather events can 

all affect crop water productivity (FAO, 2020). 

One of the ways in which higher temperatures can impact crop water 

productivity is by increasing the water requirements for crops. As temperatures 

rise, crops need more water to maintain their growth and development. This 

increased water demand can result in water stress, where the crops do not receive 

enough water to grow and yield optimally. This, in turn, can reduce crop water 

productivity. 

In addition to increased water demand, higher temperatures can also lead to 

reduced crop yields, further reducing crop water productivity. Extreme heat can 
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cause heat stress in crops, which can reduce their growth and development. This, 

in turn, can lead to reduced yields and lower crop water productivity. 

Changes in precipitation patterns can also impact crop water productivity. Too 

much or too little precipitation can lead to reduced crop yields and lower crop 

water productivity. For example, if there is too much precipitation, it can cause 

soil erosion and nutrient leaching, which can negatively affect crop growth and 

development. Too little precipitation can cause water stress, where crops do not 

receive enough water to grow and yield optimally, leading to reduced yields and 

lower crop water productivity. 

The impact of climate change on crop water productivity is a global concern, 

with studies predicting significant declines in yields and water productivity for 

major crops in different regions of the world. For instance, a recent study by Lobell 

et al. (2021) found that global maize yields are expected to decline by 7.4% on 

average by 2040 due to climate change, resulting in a 6.4% decrease in crop water 

productivity. Similarly, Azeem et al., (2020) projected that climate change could 

decrease the water productivity of rice, wheat, and maize crops in South Asia by 

8.7%, 5.5%, and 6.5%, respectively, by 2050. In the Midwest United States, Ojha 

et al. (2019) predicted a decrease in crop water productivity of maize, soybean, 

and wheat crops by 4.4%, 4.1%, and 3.1%, respectively, by the end of the century. 

Likewise, Silva et al. (2018) estimated that climate change could reduce the crop 

water productivity of maize and soybean crops in Brazil by 3.3% and 2.2%, 

respectively, by 2050. These findings highlight the urgent need for adaptation 

measures to maintain or improve crop water productivity and ensure sustainable 

food production in the face of climate change. 

Shrestha and Shrestha (2017) investigated the effects of climate change on 

crop yield and irrigation water requirement of two major cereal crops (rice and 

wheat) in Bhaktapur district, Nepal. The yield simulation model, AquaCrop, was 

used to simulate the crop yield with reasonable accuracy. Crop yield simulations, 

based on HadCM3Q0 projection, indicated decreased yield, while ECHAM5 

projection indicated increased yield for monsoon rice in the A1B scenario and 

rather stable yield for winter wheat in both projections. Simulation results for 
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management strategies indicated that the crop yield was mainly constrained by 

water scarcity and low fertility. A suitable deficit irrigation method was also 

discovered to be useful for stabilising wheat yield during the dry season. 

2.9.Potential Adaptation and Mitigation Strategies 

 Adaptation to climate change, as defined by the IPCC in 2007, involves the 

modification of natural and human systems in response to observed or anticipated 

climate change and its associated impacts, with the aim of safeguarding valuable 

opportunities. Agriculture, being highly sensitive to climate conditions, is 

particularly vulnerable to the hazards and influences of climate change. 

Consequently, adaptation involves both the development and implementation of 

capacity (IPCC, 2007). Adaptation measures can be categorized into various types, 

including anticipatory and responsive adaptations, private and public adaptations, 

as well as autonomous and planned adaptations (Orlove, 2022). 

Adaptation and mitigation strategies can play a critical role in reducing the 

impact of climate change on crop water productivity and food security. 

Implementing water-saving irrigation techniques, increasing water storage 

capacity, and improving water use efficiency can help to optimize water resources 

and reduce waste (Kang et al., 2021). Similarly, making crops more resilient to 

drought, heat stress, and other climate-related challenges can help to maintain crop 

yields and ensure food security (Amoak et al., 2022). Innovative technologies, such 

as remote sensing and GPS, can help to optimize water and fertilizer use, reduce 

waste, and increase yields (Khanal et al., 2020). Conservation agriculture and 

agroforestry can also contribute to improving soil health, increasing carbon 

sequestration, and enhancing the resilience of ecosystems to climate change (Khan 

et al., 2021). 

Mitigation strategies, such as transitioning to renewable energy sources, 

increasing energy efficiency, and reducing emissions from transportation and 

industry, can help to reduce the impact of climate change on food security (Rial, 

2024). Changes in the timing of planting and harvesting may also impact food 

security, as the availability and affordability of food may vary throughout the year. 

Investing in water storage and distribution systems can ensure that water is 
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available for irrigation during times of drought or other extreme weather events 

(Mwadzingeni, 2022). Moreover, preparedness for extreme weather events, such as 

floods, droughts, and heat waves, can help to reduce the impact of these events on 

food production and distribution. 

Food assistance programs and cash transfers can also help to ensure that 

vulnerable populations have access to food during times of food insecurity. Finally, 

reducing food waste can help to reduce the impact of climate change on food 

security by ensuring that food resources are used efficiently. Overall, implementing 

a combination of adaptation and mitigation strategies can help to build a more 

resilient food system that can cope with the challenges of climate change and ensure 

sustainable food production for future generations. 

2.9.1. Adaptation by changing cropping calander 

An adaptation measure to climate variability involves modifying cropping 

techniques by adjusting the timing of farm activities in response to changes in 

climate conditions. This adaptation strategy encompasses alterations in sowing 

dates, the provision of irrigation, and the selection of crop cultivars with varying 

phenology, taking into account the patterns of ozone pollution concentration 

(Teixeira et al., 2011). 

The study by Truong (2020) focuses on how changing the timing of planting 

rice crops can help cope with the challenges of climate change in the Long Xuyen 

Quadrilateral region of Vietnam. With climate change affecting rice paddies and 

leading to lower crop yields, the research aims to find the best times to plant rice to 

counter these effects. Using a crop model called FAO-AquaCrop, the study 

simulates rice yields under different planting schedules. The results show that 

delaying the planting schedule by 7 to 14 days can increase rice yields by around 

5% to 6% in different seasons. This suggests that changing the planting calendar 

for rice crops could be a practical way to reduce the harmful effects of changing 

weather patterns and boost rice production. This research highlights the importance 

of adapting farming practices to climate change, which can be crucial for ensuring 

food security in the region. 
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2.9.2. Adaptations in management of irrigation water 

The management of irrigation water is expected to confront significant 

challenges in the upcoming decades, primarily centered around ensuring the safety 

of water supplies and coping with the depletion of water resources (Bird et al., 

2016). Structural options such as the construction of ponds, dams, or utilization of 

groundwater may be implemented to address these challenges. Enhancing the 

management of surface storage reservoirs and mitigating leakage losses will prove 

beneficial in the context of climate change (Wang et al., 2016, Islam et al., 2022). 

Implementing appropriate agricultural practices for water consumption, the lining 

of canals and watercourses, as well as the efficient operation and maintenance of 

irrigation networks, will play a crucial role in adapting to the increased variability 

in water resources induced by climate change (Iglesias and Garrote, 2015). 

The study by Iglesias and Garrote (2015) sheds light on the pressing need 

for adaptation strategies in agricultural water management amidst climate change 

in Europe. By analyzing a substantial body of literature, the research underscores 

the intensified risks posed by climate change, particularly in regions already 

grappling with water scarcity, while also highlighting emerging opportunities in 

certain areas. Through a comprehensive review of over 168 publications spanning 

15 years, the study provides insights into the diverse adaptation strategies proposed 

to date, aiming to address regional challenges and enhance the resilience of 

agricultural water management systems. The findings emphasize the importance of 

understanding the current technological landscape and the need for proactive 

measures to bolster adaptive capacity, including policy reforms, farmer training 

initiatives, and financial support mechanisms. These insights serve as valuable 

guidance for stakeholders as they navigate the complexities of climate change 

adaptation and work towards developing robust strategies to safeguard the 

agricultural sector against future uncertainties. 

The study by Zhao and Boll (2022) underscores the critical role of adaptive 

water management strategies in addressing the challenges posed by climate change, 

particularly in the context of irrigation water management. Focusing on the Yakima 

River Basin (YRB) in Washington State, USA, the research emphasizes the 
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importance of implementing adaptations in the management of irrigation water to 

mitigate the impacts of drought on agricultural production. By enhancing an 

integrated water resource management tool, the study evaluates various adaptation 

methods aimed at enhancing the resilience and sustainability of agricultural 

systems. These adaptations include strategies such as managed aquifer recharge, 

greenhouses, optimized crop planting times, and water-efficient irrigation 

technologies. Through their analysis, the researchers highlight the necessity of 

adopting a comprehensive approach that integrates multiple adaptation methods to 

effectively alleviate future drought impacts on agriculture. This research 

contributes significantly to the understanding of adaptive water management 

strategies and their crucial role in ensuring the long-term viability of agricultural 

water resources in changing climate conditions. 

2.9.3. Adaptation strategies specific to Aquacrop Model. 

AquaCrop offers a range of potential adaptation strategies to enhance both 

yield and biomass. Strategies that align with climatic trends and simulate natural 

adaptation include adjusting the sowing date and opting for no mulching or using 

either organic or synthetic mulches (Bird et al., 2015, Islam et al., 2022). 

Additionally, modifying irrigation management practices can be effective, whether 

through surface irrigation methods like basin, border, and furrow techniques or by 

employing sprinkler or drip irrigation methods (Shrestha et al., 2016, Islam et al., 

2022). AquaCrop also provides the option to incorporate bunds as a field practice 

and assess the impact of shifting from full to deficit irrigation strategies (Bird et al., 

2015). 

The study conducted by Bird et al. (2015) employed AquaCrop's versatile 

functionalities to assess the impacts of climate change on agriculture in Sardinia 

and Tunisia, while also exploring potential adaptation strategies. By utilizing 

AquaCrop's options for variable sowing dates based on rainfall patterns and the 

inclusion of mulching as a field practice, the researchers investigated how adjusting 

agricultural practices could mitigate the adverse effects of climate change on crop 

yields. Mulching, with default parameters resulting in a 50% reduction in soil 

evaporation, was identified as a potential adaptation measure to conserve soil 
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moisture and enhance water productivity. Although bunds were tested as a field 

practice, their limited impact on crop yields and water requirements was attributed 

to default soil curve characteristics, suggesting the need for more detailed soil 

runoff information for bunds to become a viable adaptation strategy. Additionally, 

AquaCrop's capability to calculate net irrigation requirements under deficit 

irrigation management was utilized to explore future irrigation needs and inform 

adaptive strategies to maximize water-use efficiency while minimizing crop water 

stress. By integrating these AquaCrop features, the study provides valuable insights 

into how agricultural management practices can be optimized to sustain crop 

productivity in changing climate conditions, contributing significantly to climate 

change adaptation in agriculture. 

The study by Islam et al. (2022) provides valuable insights into the 

challenges and potential adaptation strategies for enhancing water productivity in 

wheat cultivation, particularly in the Dinajpur region of Bangladesh, amidst 

changing climatic conditions. By utilizing the AquaCrop model and considering 

future climate projections, the research underscores the anticipated reduction in 

water productivity of wheat due to climate change, with potential decreases of up 

to 33%. However, the study offers optimism by identifying adaptation measures 

such as altering sowing dates and introducing heat-tolerant wheat varieties, which 

could mitigate these adverse impacts and enhance water productivity. These 

findings contribute significantly to the existing literature by highlighting actionable 

strategies for policymakers and stakeholders to address the dual challenges of food 

and water security in the context of climate change, particularly in regions highly 

dependent on wheat cultivation, like northwestern Bangladesh. 


