

KERALA AGRICULTURAL UNIVERSITY B.Tech.(Food Technology) 2023 Admission I Semester Final Examination – February 2024

Beas 1102

Engineering Mathematics - I (2+0)

Marks: 50 Time: 2 hours

I		Fill in the blanks (10	x1=10)
	1.	$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \underline{\hspace{1cm}}$	
	2.	An asymptote of a curve is a tangent at	
	3.	$e^{\int P dx}$ is called of the linear differential equation $\frac{dy}{dx} + Py = Q$	
	4.	A differential equation $M dx + N dy = 0$ is said to be, if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial y}$	
	5.	The equation $\frac{dy}{dx} + Py = Qy^n$ is called equation.	
	6.	\overline{F} is said to be, If $\nabla \cdot \overline{F} = 0$	
	7.	If \hat{R} is the position vector of a point, then $\operatorname{curl} \hat{R} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
	8.	Answer the following Define the order of a differential equation.	
	9.	Write the Legendre's differential equation.	
	10.	State Divergence theorem.	
II		Write short notes on ANY FIVE of the following	5x2=10)
	1.	Write the Maclaurin's series expansion of sin x.	
	2.	Evaluate $\lim_{x\to 0} \tan x \log x$	
	3.	Find the integrating factor of $x \log x \frac{dy}{dx} + y = \log x^2$	
	4.	Solve the equation $(D^2 + 6D + 9)y = 0$	
	5. 6.	Find the particular integral (P.I) of $(D^2 + 5D + 6)y = e^x$ Find the Wronskian of the functions $y_1 = e^x$ and $y_2 = e^{-x}$	
	7.	Evaluate div F at the point (1,2,3) given $\hat{F} = 3x^2\hat{i} + 5xy^2\hat{j} + 5xyz^3\hat{k}$	
III	1		5x4=20)
	1. 2.	Find the first and second partial derivative of $z = x^3 - y^3 + 3axy$ Find the maximum and minimum points of $2(x^2 - y^2) - x^4 + y^4$	
	3.	If $u = x \log xy$, where $x^3 + y^3 + 3xy = 1$, find $\frac{du}{dx}$	
	4.	u.	
	5.	Using method of variation of parameters, solve $(D^2 + 4)y = \tan 2x$	
		Derive the value of $J_{\frac{-1}{2}}(x)$	
	6. 7.	Evaluate div F at the point (1,2,3) given, $\hat{F} = x^2yz\hat{\imath} + xy^2z\hat{\jmath} + xyz^2\hat{k}$	
	7.	Using Green's theorem, evaluate $\int_c (y - \sin x) dx + \cos x dy$, where C is	the plane
		triangle enclosed by the lines	
IV			x10=10)
	1.	Verify divergence theorem for \hat{F} taken over the cube bounded by x=0, x = 1; y =	0,y = 1;

z = 0, z = 1 where $\hat{F} = x^2 \hat{i} - z \hat{j} + yz \hat{k}$ Find the complete solution of $(D^2 - 2D + 2)y = x + e^x \cos x$