

KERALA AGRICULTURAL UNIVERSITY B.Tech.(Food Technology) 2020 Admission I Semester Final Examination-November 2021

Beas 1102

Engineering Mathematics I (2+0)

Marks: 50 Time: 2 hours

1		Fill in the blanks	(10x1=10)	
	1	$\lim \frac{\sin x}{x} =$	()	
	2	$\lim_{x \to 0} \frac{\sin x}{x} = \underline{\qquad}$		
	3	A differential equation is said to be		
	3.	A differential equation is said to be if the dependent variable differential coefficient occur only in the first degree and not multiplied together	able and it	
	4.	4. A differential equation $M dx + N dy = 0$ is said to be exact if		
	5.	An equation of the form $y = px + f(p)$ is known as equation.		
	6.	\overline{F} is said to be, if $\nabla \times \overline{F} = 0$		
	7.			
		Answer the following		
	8.	Define degree of a differently equation.		
	9.	Write the Bessel's differential equation of order n.		
	10.	State Stoke's Theorem.		
II		Write short notes on ANY FIVE of the following	(5x2=10)	
	1.	Write the Maclaurin's series expansion of cos x.	$(3\lambda 2-10)$	
	2.			
	3.	Find the integrating factor (I.F) of $\cos^2 x \frac{dy}{dx} + y = \tan x$		
	4.	Solve the equation $(D^2 + 5D + 6)y = 0$		
	5.	Find the particular integral (P.I) of $(D^2 + 6D + 9)y = e^x$		
	6.	Find the Wronskian of the function $y_1 = \cos 2x$ and $y_2 = \sin 2x$		
	7.	Evaluate $\operatorname{div} F$ at the point (1,2,3) given $\hat{F} = x^2 yz \hat{\imath} + xy^2 z \hat{\jmath} + xyz^2 \hat{k}$		
Ш		Answer ANY FIVE of the following	(7	
	1.	Find the first and second partial derivatives of $z = x^3 + y^3 - 3axy$	(5x4=20)	
	2.	Find the maximum and minimum points of $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$.		
	3.	Given $u = \sin \frac{x}{y}$, $x = e^t$ and $y = t^2$, find $\frac{du}{dt}$ as a function of t .		
	4.	Using method of variation of parameters, solve $(D^2 - 1)y = \frac{2}{(1+e^x)}$		
	5.	Derive the value of $J_{\underline{1}}(x)$		
	6.			
	7.	Evaluate curl F at the point (1,2,3) given $\hat{F} = 3x^2\hat{\imath} + 5xy^2\hat{\jmath} + 5xyz^3\hat{k}$		
		Using Green's theorem, evaluate $\int_c (2x^2 - y^2)dx + (x^2 + y^2)dy$ where C is the		
		boundary of the area enclosed by x-axis and the upper half of the circle $x^2 + y^2 = a^2$		
IV		Write an essay on ANY ONE of the following (1x10=10)		
	1.	Verify divergence theorem for \hat{F} taken over the cube bounded by $r=0$, $r=1$, $y=0$	(1x10=10)	
		$z=0, z=1$ Where $F=4xzi-v^2j+vzk$, y-1;	
	2.	Solve $(D^2 + 3D + 2)y = e^{-x} + x^3 + \sin x$		