

KERALA AGRICULTURAL UNIVERSITY B. Tech. (Agrl. Engg.) 2021 Admission II Semester Final Examination - September 2022

Sacs.1206

Engineering Mathematics II (2+1)

Marks: 50 Time: 2 hours

(10x1=10)

I Define the following

1. Harmonic function

2. Conditional convergence

- 3. continuity of a complex valued function
- 4. Euler's formulae
- 5. Practical harmonic analysis Answer the following
- 6. Write two dimensional heat flow equation.
- 7. State Cauchy's integral test.
- 8. Write the Cauchy Riemann equations in Cartesian form.
- 9. Write the Taylor's series of expansion of f(x).
- 10. State comparison tests (any one).

Write short notes on ANY FIVE of the following II

(5x2=10)

- Obtain Taylor's series expansion of log(cosx) about the point $x = \frac{\pi}{3}$ upto 4^{th} degree term. 1.
- 2. Find the analytical function f(z) whose imaginary part is $e^x(x \sin y + y \cos y)$
- 3. Solve: $p \cot x + q \cot y = \cot z$
- 4. Find the Fourier series of f(x) = |x| in the interval $-\pi < x < \pi$
- 5. Verify Cauchy's theorem for the function $f(z) = ze^{-z}$ over the unit circle with origin as the centre.
- 6. Test the series for absolute convergence: $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \cdots$
- Using Cauchy's integral test, find the nature of the series $\frac{1}{e} + \frac{4}{e^2} + \frac{9}{e^3} + \frac{16}{e^4}$

III Answer ANY FIVE of the following

- Expand the function $f(x) = x(2\pi x)$ in a fourier series in $(0,2\pi)$ and deduce that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac$
- 2. Express f(x) = x as a half range cosine series and a half range sine series in the integral (0,2)
- 3. Solve (y+z) p + (z+x) q = x+y.
- 4. Show that $u = (r + \frac{1}{r})\cos\theta$ is harmonic. Find its harmonic conjugate. Also determine the
- corresponding analytic function. Solve $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} = 0$ by the method of separation of variables.
- State and prove cauchy's integral theorem. Find the solution of $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ subject to the conditions that u(o,t) = u(l,t) = 0 and u(x,o) = x, where I is the length of the base.

IV

(1x10=10)

- Write an essay on ANY ONE of the following

 1. Test the series $1 \frac{1}{5} + \frac{1}{9} \frac{1}{13} + \cdots$ for

 (i) Convergence

 (ii) Absolute convergence
- (ii) Absolute convergence
 (iii) Conditional convergence
 2. Using Raabe's test, test the convergence the series 1+ ²/₃x + ^{2.3}/_{3.5}x² + ^{2.3.4}/_{3.5.7}x³+-----
