

KERALA AGRICULTURAL UNIVERSITY

B.Tech.(Food Technology) 2021 Admission I Semester Final Examination -May 2022

Beas.1102

Engineering Mathematics I (2+0)

Marks: 50 Time: 2 hours

I		Fill in the blanks	(10x1=10)
	1.	A point in which a function is neither maximum nor minimum is cal	led
	2.	The stationary points of the function $f(x) = x^2 + y^2$ is	<u> </u>
	3.	The equation of the form $y = px + f(p)$ is known as	
	4.	A differential equation $Mdx + Ndy = 0$ is said to be exact different	ntial equation if the
		condition satisfy.	
	5.	An equation of the form $x^2y'' - xy' + y = \log x$ is called	_ differential equation.
	6.	The complementary function of $(D^2 - 3D + 2)y = 0$ is	
	7.	The particular integral of $(D^2 + 3D + 2)y = e^x$ is	
		Choose the correct answer	
	8.	Stoke's Theorem converts	
		a) Line integral to surface integral	
		b) Surface integral to volume integral	
		c) Line integral to volume integral	
		d) None of these	
	9.	$\int_{C} u dx + v dy = \underline{\hspace{1cm}}$	
		a) $\iint_{R} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} dx dy$	
		b) $\iint_{R} \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} dx dy$	
		c) $\iint_{R} \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} dx dy$	
		d) $\iint_{R} \frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} dx dy$	
	10.	Define Jacobian $J\left(\frac{u,v}{x,y}\right)$	
I		Write short notes on ANY FIVE of the following	(5x2=10)
	1.	Evaluate $\lim_{x \to 0} \frac{x - \sin x}{x^3}$	
	2.	If $u = x^2 + e^{xy}$ find the first order partial derivatives $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$	

3. Given $f(x, y) = e^x \sin y$. Show that the function satisfy the Laplace equation

 $f_{xx} + f_{yy} = 0$

- 4. Show that the differential equation $(5x^4 + 3x^2y^2 2xy^3)dx + (2x^3y 3x^2y^2 5y^4)dy = 0$ is exact.
- 5. Modify into Clairaut's form and hence find the general solution of $(p+1)^2(y-px)=1$
- 6. Find grad ϕ when $\phi = 3x^2y y^3z^2$
- 7. Find the curl of the vector $\overrightarrow{v} = xyz \ \hat{i} + 3x^2y \ \hat{j} + (xz^2 y^2z) \ \hat{k}$

III Answer ANY FIVE of the following

(5x4=20)

- 1. Find the Maclaurin's series expansion of $\sin x$ up to three non zero terms.
- 2. If $u = \log(x^2 + y^2)$ verify that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$
- 3. If w = f(x y, y z, z x) Show that $w_x + w_y + w_z = 0$
- 4. Solve the differential equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = 5 + e^{2x}$
- 5. Prove that $Div\left(Curl\stackrel{\rightarrow}{v}\right) = 0$ or $\nabla \cdot (\nabla \times \vec{v}) = 0$
- 6. Find $\iint_{S} \vec{F} \cdot \hat{n} \, dS$ using divergence theorem where $\vec{F} = (2x + 3z)\hat{i} (xz + y)\hat{j} + (y^2 + 2z)\hat{k}$ and S is the surface of the sphere whose volume is 36π cubic units
- 7. If $\vec{F} = (3x^2 3yz)\hat{\imath} + (3y^2 3xz)\hat{\imath} + (3z^2 3xy)\hat{\imath}$ Find $div\vec{F}$, $curl\vec{F}$

IV Write an essay on ANY ONE of the following (1x10=10)

- 1. Locate all the relative maxima, minima and saddle points of the function $f(x, y) = 3x^2 2xy + y^2 8y$
- 2. Solve by the method of variation of parameters $\frac{d^2y}{dx^2} + 4y = \tan 2x$
