

KERALA AGRICULTURAL UNIVERSITY

B.Tech. (Agrl. Engg.) 2020 Admission II Semester Final Examination-October-2021

Sacs 1206

Engineering Mathematics – II (2+1)

Marks: 50 Time: 2 hours

I			(10x1=10)	
	1.	The value of $\frac{1}{1+x}$ in series form is		
	2.	If $u_n > 0$ for all finite n and $\frac{u_n}{u_{n+1}} = 1 + \frac{h}{n} + \frac{B(n)}{n^2}$ in which $B(n)$ is a bounded function		
		n to $n \to \infty$, and $\sum u_i$ converges for $h > 1$ and diverges for $h < 1$, then this series	es for $h > 1$ and diverges for $h < 1$, then this series is called $= \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
	3.	The value of $\cos(2n\pi + nx) = 1, 2, 3, \dots$		
	4.			
	5.	The one dimensional heat flow equation is		
	6.	The Maclaurin's series of $f(z)$ is		
	7.	The Cauchy- Riemann in Cartesian form is Answer the following		
	8.	Find the nature of the series $\frac{3}{4} + \frac{3.6}{4.7} + \frac{3.6.9}{4.7.10} + \dots + \infty$		
	9.	A periodic function of period 4 is defined as $F(x) = x $, $-2 < x < 2$. Find the Eule Coefficient a_0 in its Fourier expansion.	Find the Euler's	
	10.	Find the complementary function for $(D^3 + 2D^2D^1 - DD^{1^2} - 2D^{1^3})$ z = 0	,	
II		Write Short notes on any FIVE of the following	(5x2=10)	
	1.	Find the value of Cauchy Ration test for $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$	•	
	2.	Write half range cosine series.		
	3.	What is the Fourier series of the function $sin^3 x$.		
	4.	Define Clairaut's form of PDE. Write its complete solution.		
	5.	Solve $xp + yq = z$.		
	6.	Show that the function $f(z) = xy + iy$ is continuous everywhere but not different anywhere.	tiable	
	7.	Evaluate $\int \frac{z}{z+2} dz$ where c is the unit circle $ z = 1$.		
III		Answer any FIVE of the following.	(5x4=20)	
	1.	Show that the p series test $\sum n^{-p}$, p = 0.999 is convergent.	,	
	2.	Obtain the Fourier series of $f(x) = x^2$ in $-\pi < x < \pi$ and hence show that $\frac{1}{14}$ +	$\frac{1}{1}$ +	
		$\frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{\pi^4}{90}$	24	
	3.	Find the Cosine series for $f(x) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{2,4,6}^{\infty} \frac{\cos nx}{n^2 - 1}$		

- 4. Solve $\frac{\partial^3 z}{\partial x^3} 3 \frac{\partial^3 z}{\partial x^2 \partial y} + 2 \frac{\partial^3 z}{\partial x \partial y^2} = 0$
 - 5. Use the method of separation of variables to solve the equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial y} + 2u$
 - 6. Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in a Laurent's series valid in the region |z-1| > 1
 - 7. Find the residue and pole of the function $f(z) = \frac{(z-3)}{(z+1)(z+2)}$

IV Answer any ONE of the following

(1x10=10)

- Find the Fourier series expansion of f(x) = x² + x in (-2, 2). Hence find the sum of the series 1/1² + 1/2² + 1/3² + ··· ∞
 A uniform bar of length l through which heat flow is insulated at its sides. The ends are
- 2. A uniform bar of length *l* through which heat flow is insulated at its sides. The ends are kept at zero temperature. If the initial temperature at the interior points of the bar is given by
 - (i) $k \sin^3 \frac{\pi x}{l}$
 - (ii) $k(lx-x^2)$

for $0 \le x \le l$, find the temperature distribution in the bar after time t.
