KERALA AGRICULTURAL UNIVERSITY
B.Tech. (Agrl. Engg.) 2019 Admission

I Semester Final Examination-January 2020

Sacs. 1101
Engineering Mathematics - I (2+1)
Marks:50
Time: 2 hours

I Fill in the blanks:
($10 \times 1=10$)
1 If $z=\operatorname{Sin}\left(2 x+3 y^{2}\right)$ find $\frac{d z}{d x}$
2 Rodrigue's formula for $\operatorname{Pn}(x)$ is \qquad .
$3 \mathrm{~J}_{1 / 2}(\mathrm{x})=$ \qquad -.
4 Complementary function of $\left(\mathrm{D}_{2}-4 \mathrm{D}+3\right) \mathrm{y}=0$ is \qquad .
5 The total derivative of the function $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ is \qquad .
$6 \quad \int_{1}^{2} \int_{0}^{1} 4 x y d x d y$ is \qquad -
7 Necessary and sufficient condition for the differential equation $\mathrm{Mdx}+\mathrm{Ndy}=0$ to be exact is \qquad .
8 A vector with zero divergence is called \qquad .
9 For any vector function F , $\operatorname{div} \operatorname{curl} \mathrm{F}=$ \qquad .

State True or False

10 The function $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{x y^{2}+x^{3}-y^{3}}{y x^{2}+x y^{2}}$ is a homogeneous function.
II Write Short notes on ANY FIVE of the following
1 Expand $e^{\sin x}$ in ascending powers of x.
2 Verify Euler's theorem if $u=x^{3}+y^{3}-3 a x y^{2}$.
3 Solve $(x+y-2) d x+(x-y+4) d y=0$.
4 Express $f(x)=4 x^{3}-2 x^{2}+3 x-8$ in terms of Legendre polynomial.
5 Solve $\left(D^{2}-9\right) y=\sin 2 x$.
6 Find Curl f, if $\mathrm{f}=\mathrm{xz}^{3} \vec{\imath}-2 \mathrm{x}^{2} \mathrm{yz} \vec{\jmath}+2 \mathrm{yz}^{4} \vec{k}$ at $(1,2,1)$
7 If a and b are irrotational, prove that $\mathrm{a} \times \mathrm{b}$ is irrotational.
III Answer ANY FIVE of the following
(5x4=20)
1 Find $\mathrm{J}\left(\frac{u, v, w}{x, y, z}\right)$ if $\mathrm{u}=\frac{2 y z}{x}, \mathrm{v}=\frac{3 z x}{y}$ and $\mathrm{w}=\frac{4 x y}{z}$
2 Find the maximum and minimum value of $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$.
3 Solve $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$
4 Solve $\mathrm{x} \frac{d y}{d x}+\mathrm{y}=\mathrm{x}^{3} \mathrm{y}^{6}$.
5 Prove that $\mathrm{J}_{-\mathrm{n}}(\mathrm{x})=(-1)^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})$
6 Solve $\mathrm{x}^{2} \frac{d^{2} y}{d x^{2}}-\mathrm{x} \frac{d y}{d x}-3 \mathrm{y}=\sin (\log \mathrm{x})$
7 Use Green's theorem to evaluate $\oint\left(x^{2}+x y\right) d x+\left(y^{2}+y^{2}\right) d y$ where C is the square formed by the lines $\mathrm{x}= \pm 1$ and $\mathrm{y}= \pm 1$.
IV Write an essay on ANY ONE of the following
1 Verify Stoke's theorem for $\mathrm{f}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \vec{\imath}-2 \mathrm{xy} \vec{\jmath}$ around the rectangle bounded by $\mathrm{x}= \pm a, \mathrm{y}=0$ and $\mathrm{y}=\mathrm{b}$.
2. Solve by method of variation of parameters $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=\frac{e^{3 x}}{x^{2}}$

