

KERALA AGRICULTURAL UNIVERSITY B.Tech.(Ag. Engg) 2018 Admission I Semester Final Examination-January 2019

Sacs.1101

T

П

Engineering Mathematics I (2+1)

Marks:50 Time:2hours

Fill in the blanks:

(10x1=10)

(5x2=10)

- Find the asymptote to the curve $y^2(a+x) = x^2(b-x)$, parallel to y axis. State Euler's theorem on homogeneous functions.
- 3 If $x^3 + y^3 3axy = 0$ find $\frac{dy}{dx}$
- ⁴ Find a differential Equation representing the family of curves $y = Ae^{x}$
- 5 Find the general solution of the differential Equation $(D^2 3D + 2) y = 0$ where $D = \frac{d}{dx}$
- 6 What is the general form of a Cauchy's Linear Differential Equation and write the transformation needed to convert it in to a linear differential equation with constant coefficients.

7 Find the unit vector normal to the surface $x^2 + y^2 + z^2 = a^2$ at (x,y,z).

8 Define Curl of a vector valued function.

9 Calculate
$$\nabla^2 f$$
 where $f = 4x^2 + 9y^2 + z^2$

10 State the formula in Green's theorem.

Write Short notes on ANY FIVE of the following

- 1 What is the maximum value of the function $y = x(1 x)^2$ in the interval (0,1)
- 2 Find the Taylor series expansion of the function y = Sin x about x=0

3 Solve
$$x \frac{dy}{dx} + y = xy^3$$

4 Solve $y = p \sin p + \cos p$

5 Solve
$$\frac{d^2y}{d^2x} - 12\frac{dy}{dx} + 36y = e^{6x}$$

6

Evaluate
$$\int_{C} \vec{F} \cdot d\vec{r}$$
 along the parabola $\mathcal{Y}^{2} = x$ between the points (0,0) and (1,1)

- where $\vec{F} = x^2 \vec{i} + xy \vec{j}$
- ⁷ Use Gauss divergence theorem to evaluate $\iint_{S} (yz \ \vec{i} + zx \ \vec{j} + xy \ \vec{k}) dS$ where S is the surface of the sphere in the first octant.

ш

1

Answer ANY FIVE of the following

(5x4=20)

Prove that $\lim_{x \to 0} \sin x \log x = 0$

If $u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$ prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$ 2

Solve by the method of variation parameters, $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \log x$ 3

Solve $\frac{dx}{dt} - 7x + y = 0$; $\frac{dy}{dt} - 2x - 5y = 0$ 4 Prove that $J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \frac{3-x^2}{x^2} \sin x - \frac{3}{x} \cos x \right\}$ 5

Find CurlCurl \vec{A} where $\vec{A} = x^2 yi - 2xzj + 2yzk$ at the point (1,0,2) 6

Evaluate by Stoke's theorem $\oint (e^x dx + 2y dy - dz)$ where C is the curve 7

$$x^2 + y^2 = 4, z = 2$$

IV

1

Answer ANY ONE of the following

(1x10=10)

Evaluate $\iiint x^2 yz dx dy dz$ over the region bounded by the planes x=0, y=0, z=0, x+y+z=12. (a) If $\vec{A} = x^2 z \vec{i} - 2y^3 z^2 \vec{j} + xy^2 z \vec{k}$ find $\nabla \cdot \vec{A}$ at the point (1,-1,1)

(b) Solve $(D^2 - 2D + 2)y = e^x x^3$