KERALA AGRICULTURAL UNIVERSITY B.Tech (Agrl.Engg.) 2016 Admission Ist Semester Final Examination-February-2017

Cat. No: Sacs.1101. Title: Engineering Mathematics (2+1)

I Fill up the blanks/Answer the following (10x1=10)
1. If z = Cos(2x + 3 y²) find dz/dy
2. Necessary and sufficient condition for the differential equation Mdx + Ndy = 0 to be exact is
3. \$\int_{1}^{2} \int_{0}^{1} 12xy dxdy is\$
4. Complementary function of (D² + 3D + 2)y = 0 is\$
5. The total derivative of the function z = f(x,y) is\$
6. \$J_{1/2}(x) =\$
7. A vector with zero divergence is called\$
8. For a scalar function F , Curl (grad F) =\$
9. The function f(x,y) = \frac{xy^2 - y^3}{yx^2 + xy^2}\$ is a homogeneous function.(TRUE OR FALSE)
10. Rodrigue's formula for Pn(x) is\$

II Write short notes/answers on any FIVE of the following

(5x2=10)

Č.,

Marks: 50.00

Time: 2 hours

1. Expand $(1 + x)^m$ in ascending powers of x.

2. Verify Euler's theorem if $f = (ax + by)^{\frac{1}{3}}$

3. Solve (x - 2y + 3)dx - (2x - y + 5)dy = 0

4. Express $3x^3 - x^2 + 5x - 2$ in terms of Legendre polynomial

5. Solve $(D^2 - 4)y = \cos 3x$

6. Find Curl f if $f = y^3 \vec{\iota} - z^2 \vec{j} + 2x^2 \vec{k}$ at (1,1,1)

7. Show that for any vector function F , div curl F = 0

III Write short answers on any FIVE

- 1. Find $J\left(\frac{u,v,w}{x,y,z}\right)$ if $u = \frac{x}{y-z}$, $v = \frac{y}{z-x}$ and $w = \frac{z}{x-y}$
- 2. Find the maximum and minimum value of $f(x,y) = x^3 + 3xy^2 15x^2 15y^2 + 72x$
- 3. Solve $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$
- 4. Solve $\frac{dy}{dx} + 2xy = x^3$
- 5. Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = x^2 \log x$
- \mathcal{E} . Prove that $J_{-n}(x) = (-1)^n J_n(x)$ where n is a positive integer
- z. Use Green's theorem to evaluate $\oint x^2 y \, dx + y^3 \, dy$ where C is the closed path formed by y = x & y = x³ from (0,0) to (1,1)
- IV Write essay on any ONE
 - \mathcal{I} . Verify Stoke's theorem for $f = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ where S is the upper half of the sphere $x^2 + y^2 + z^2 = 1$ & C is its boundary.

2. Solve by the method of variation of parameters $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5y = \frac{e^{2x}}{Sinx}$

(5x4=20)

(1x10=10)