

Iden. 1203

KERALA AGRICULTURAL UNIVERSITY

B. Tech.(Agri. Engg) 2018 Admission

II Semester Final Examination- June 2019

Strength of Materials ($\mathbf{1 + 1}$)
Marks: 50
Time: 2 hours
($10 \times 1=10$)

I A Fill in the blanks

1 The ratio of the effective length to the least radius of gyration is known as \qquad
2 A \qquad is a compression member of a truss, a \qquad is a principal compression member in crane.
3 If the flexural rigidity is not uniform throughout the length of the beam, then method is used for finding the slope and deflection
4 For a Hinge support in a given beam slope exists and deflection is \qquad , while in conjugate beam Shear force exists and bending moment is
5 A moment which is applied to a structural joint to produce without translation gets distributed among the connecting members at the joint in the same proportion as their
B Match the following
6 Hinge support
a. Slenderness ratio <50

7 Fixed end
b. S.F exists and BM is zero

8 Short steel column
c. S.F and BM are zero

9 Free end
d. Slenderness ratio >200

10 Long steel column
e. S.F and B.M exists

II Write Short notes on any FIVE of the following
(5x2=10)
1 Enumerate the methods for finding out the slope and deflection of a beam. Explain any one.
2 Enumerate the assumptions made in Euler's theory of long columns.
3 State the assumptions made in Euler's theory of long columns.
4 What is conjugate beam? State its applications.
5 Enumerate the various causes of failure of dams.
6 State Clapeyron's theorem of three moments.
7 How do you classify statically indeterminate beams?
III Answer any FIVE of the following.
1 A cantilever of length I carries a point load at a distance l_{1} from the fixed end. Calculate the slope and deflection at the free end for the conjugate beam.
2 A 4 m simply supported beam carries a concentrated load of 20 kN in the middle of the beam. If $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{I}=50 \times 10^{6} \mathrm{~mm}^{4}$, calculate the deflection under the load using conjugate beam method.
3 Derive the relation for the Euler's Crippling load for a column when one end is fixed and the other end is hinged
4 A cast iron circular column of 20 cm external diameter, 2 cm thickness and 4 m long carries a load of 15 at an eccentricity of 2.5 cm . Find the extreme stresses on the column section.

5 A dam section of 8 m high with 7.5 m of water impounded has a base width of the dam of 5 m . The weight of masonry structure is $2240 \mathrm{~kg} / \mathrm{Cu} . \mathrm{m}$. The water face of the dam is vertical. Find the minimum and maximum stress intensities at the base.
6 A hallow iron cast of 4.5 m long, with internal diameter of 200 mm and 20 mm thick is fixed at both ends. Calculate the safe load by Rankine's formula using a factor of safety of 2.5. Find the ratio of Euler's to Rankine's loads. Take $E=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Rankine's constant as $1 / 1600$ for both ends pinned case and $f_{c}=550 \mathrm{~N} / \mathrm{mm}^{2}$.
7 A 2.5 m long Strut of 6 cm diameter is fixed at one end while its other end is hinged. Find the safe load for the member using Euler's formula allowing a factor safety of 3.5 . Take $\mathrm{E}=2.1 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$.

IV Write an essay on any ONE of the following
1 Determine the deflections at point C, D and E in a simply supported beam as shown below. Plot the elastic curve. Take $E=200 \mathrm{KN} / \mathrm{mm}^{2}$ and $\mathrm{l}=60 \times 10^{6} \mathrm{~mm}^{4}$.

2 A simply supported horizontal girder of 14 m is loaded by two concentrated loads of 12 t and 8 t at a distance of 3 m and 4.5 m respectively from the two ends respectively. Calculate the deflection of the girder under each loads. Take $\mathrm{I}=16 \times 10^{4} \mathrm{~cm}^{4}$ and $\mathrm{E}=2.1 \times 10^{6}$ $\mathrm{kg} / \mathrm{cm}^{2}$.

