

### KERALA AGRICULTURAL UNIVERSITY

# B.Tech. (Agrl. Engg.) 2018 Admission III Semester Final Examination-January 2020

Sacs.2110

## Engineering Mathematics-III (2+1)

Time: 2 hours

Marks: 50

| I |    | Fill in the Blanks (10x1=10)                                                   |
|---|----|--------------------------------------------------------------------------------|
|   | 1. | If one of the regression coefficients is positive, the other will never be     |
|   | 2. | $L(t^3) = \underline{\hspace{1cm}}.$                                           |
|   | 3. | $\nabla \Delta f(x) = \underline{\hspace{1cm}}$                                |
|   | 4. | The normal distribution is also known as                                       |
|   | 5. | The limits of correlation coefficient r is                                     |
|   |    | State True or False                                                            |
|   | 6. | If X and Y are independent, then $Cov(X,Y) = 0$ .                              |
|   | 7. | The difference between the means of two small samples can be tested by t test. |
|   |    |                                                                                |

- 8. The measure of dispersion that is influenced most by extreme values is the interquartile range.
- 9. Newton's divided difference formula is preferred when the arguments are not equally spaced.
- 10. While applying Simpson's 3/8 rule the number of subintervals should be odd.

#### П Write Short notes on ANY FIVE of the following

(5x2=10)

- 1. Find  $L[te^{-t}]$
- 2. Find  $L[t^2 + 3t 5]$
- 3. Prove  $\delta = \nabla E^{1/2}$
- 4. Write the various measures of central tendency
- 5. Find the probability of getting 2 heads in 4 tosses of a fair coin?
- 6. Define Poison distribution
- 7. X is normally distributed and the mean of X is 12 and the S.D. is 4. Find  $P(X \ge 20)$

#### Ш Answer ANY FIVE of the following.

(5x4=20)

The following table shows the mean number of bacterial colonies per plate obtainable by four slightly different methods from soil samples taken at 4 P.M. and 8 P.M. respectively.

|        | Method A | Method B | Method C | Method C |
|--------|----------|----------|----------|----------|
| 4 P.M. | 29.75    | 27.50    | 30.25    | 27.80    |
| 8 P.M. | 39.20    | 40.60    | 36.30    | 42.50    |

Are there more bacterial colonies at 8 P.M. than at 4 P.M.?

2. Twelve boys were fed on diet A and 15 on diet B. The gains in weight for the individual boys (in pounds) were as shown:

| A: | 25 | 32 | 30 | 34 | 24 | 25 | 14 | 32 | 24 | 30 | 31 | 35 |    |    | -  |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| B: | 44 | 34 | 22 | 10 | 47 | 31 | 40 | 30 | 32 | 35 | 18 | 21 | 35 | 29 | 22 |

PTO

Find whether diet B is superior to diet A, given that at five percent level of significance, value of t for 25 degrees of freedom is 1.708

3. Given the table

| Х              | 0 | 0.1    | 0.2    | 0.3    | 0.4    |
|----------------|---|--------|--------|--------|--------|
| e <sup>x</sup> | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 |

Find the value of y when x=0.38 (using Newton's backward interpolation formula)

- 4. Using Bessel's formula find f(25) given f(20)=2854, f(24)=3162, f(28)=3544, f(32)=3992
- 5. If  $y_1 = 4$ ,  $y_3 = 12$ ,  $y_4 = 19$  and  $y_x = 7$ , find x
- 6. Solve: y'' + 4y' 5y = 0 given that y=0 given that y=0,  $\frac{dy}{dx} = 1$  when x = 0 (using Laplace transform)
- The two lines of regression are 8x-10y+66=0, 40x-18y-214=0. Find the correlation coefficient between x and y.

### IV Write an essay on ANY ONE of the following

(1x10=10)

- 1. By applying the fourth order Runge-Kutta method find y(0.2) from  $\frac{dy}{dx} = y x$ , y(0) = 2 taking h=0.1
- Two groups of 100 cows each were taken for testing the use of a vaccine. One inoculated
  group in which 15 cows contracted the disease while 25 contracted the disease in the other
  non-inoculated group. Test the efficacy of the vaccine.

\*\*\*\*\*\*