

KERALA AGRICULTURAL UNIVERSITY B.Tech. (Ag. Engg.) 2017 Admission III Semester Final Examination-January-2019

Basc.2108

Engineering Mathematics-III (2+1)

Marks: 50 Time: 2 hours

I		Fill in the blanks: (10x1=10)
	1	If \vec{A} is solenoidal then div $\vec{A} =$
	2	The mapping $w = \frac{1}{z}$ is known as
	3	The poles of $\frac{z+1}{z^2(z-2)}$ are
	4	If $f(x)$ is an even function then $f(-x) = $
	5	If $\vec{r}(t)$ is the position vector of a moving particle ,then velocity is given by
	6	$\nabla xa \vec{f} = $ (a is any scalar).
	7	If the principal part of the Laurent's series expansion of $f(z)$ about $z = a$ has infinite number of terms then $z = a$ is
	8	$\int_{-C} f(z) dz =$
	9	The maximum of the modulus value of the directional derivative of the scalar function is
	10	$\nabla(\vec{f},\vec{g}) =$
Π		Write Short notes on ANY FIVE of the following (5x2=10)
	1	Show that an analytic function is constant, if its real part is constant.
	2	Evaluate $\frac{1}{2\pi i} \int_C \frac{z^2 + 5}{z - 3} dz$ where C is $ z = 4$
	3	Find the Taylor series expansion of $f(z) = e^{z}$ at $z = 0$
	4	Determine the nature of singularity of the function $f(z) = \frac{z - Sinz}{z^3}$
	5	Find ∇f where $f(x, y, z) = x^2 + y^2 - 2z^2$ at (1,1,1)
	6	Find the velocity and acceleration at t=1/2 of a moving particle whose position
		at time t is given by $\vec{r}(t) = (t^2 + 1)i + (2t - 1)j$
ě.	7	Find the Fourier sine transform of $2e^{-5x} + 5e^{-2x}$. P.T.O

Answer ANY FIVE of the following

- ¹ Find the directional derivative of the function x y + y z + z x along the direction of i + 2j + 2k at the point (1, 2, 0).
- ² Show that $\vec{F} = e^x(2y+3z)i+2e^xj+3e^xk$ is irrotational and find its scalar potential

3 Find the Fourier Cosine transform of $f(x) = \begin{cases} Cosx, & 0 < x < a \\ 0, & x > a \end{cases}$.

Show that the function $u = x^3 - 3xy^2$ is harmonic and find the analytic function whose real part is u.

Evaluate $\int_{C} \frac{zdz}{(9-z^2)(z+i)}$ where C is the circle |z| = 2 taken in the positive sense

6 Using residue theorem evaluate $\int_C \frac{z^2 dz}{(z-2)(z+3)}$ where C is the circle |z| = 4

7 Discuss the transformation $w = e^z$

Answer ANY ONE of the following

Expand $f(z) = \frac{z}{(z-1)(2-z)}$ as a Laurent's series valid for

1) |z| < 1 2) |z| > 2 3) |z - 1| > 1 4) 1 < |z| < 2Use Gauss divergence theorem to evaluate $\iint_{S} \vec{F} \cdot \hat{n} \, ds$ where S is the surface of rectangular parallelepiped $0 \le x \le a, \ 0 \le y \le b, \ 0 \le z \le c$ and $\vec{F} = x^2 i + y^2 j + z^2 k$.

4

5

IV

1

2

(5x4=20)

(1x10=10)