Cien. 3105

KERALA AGRICULTURAL UNIVERSITY
 B.Tech.(Food. Engg.) 2016 Admission
 V Semester Final Examination-January-2019

Design of Structures ($1+1$)
Marks: 50
Time:2 hours

I State True or False
(10x1=10)
1 The most economical section for a column, is tubular section.
2 A beam is defined as a structural member subjected to axial loading.
3 Web crippling generally occurs at the point where deflection is maximum.
Fill in the Blanks
4 The ratio of shearing stress to shearing strain within elastic limit, is known as
5 The Indian standard code which deals with steel structures, is \qquad
6 When two plates are placed end to end and are joined by two cover plates, the joint is known as
Define the Following
7 Neutral axis.
8 Lever arm.
9 Modular ratio.
10 Flanged beam.
II Write Short notes on any FIVE of the following
(5x2=10)
1 Center line method.
2 Effective length of weld.
3 Web crippling in steel beam.
4 Main differences between limit state and working state methods.
$5 \mathrm{Fe} 250, \mathrm{Fe} 415$ and Fe 500.
6 Differentiate between one way and two way slab.
7 Book value.

III Answer any FIVE of the following.
(5x4=20)
1 The two plates of 20 mm and 18 mm thickness are to be joined by a groove weld. The joint is subjected to a factored tensile force of 430 kN . Due to some reasons the effective length of the weld that could be provided was 180 mm only. Check the safety of the joint if single V groove weld is provided.
2 Show with neat diagram slab base and gusseted base plate.
3 Calculate the design shear strength of a 16 mm diameter bolt of grade 4.6 for double cover butt joint. Each of the cover plate being 8 mm thick. The main plate to be jointed are 12 mm thick.
4 Calculate the maximum load that can be carried by $400 \times 400 \mathrm{~mm}$ square column reinforced with 8 bars of 22 mm diameter. The effective length of column is 4 m .
5 Discuss critical section for punching shear in RCC footings.
6 An R.C.C. beam of width 450 mm and depth 750 mm is reinforced with 8 bars of 20 mm diameter. If the stresses in steel and concrete are not to exceed 230 MPa and 7 MPa respectively, determine moment of resistance considering it as over reinforced.
Assume $\mathrm{m}=13.33$.
7 Differentiate between scrap and salvage value.

IV Answer ANY ONE of the following

1 Design a slab over a room $4 \mathrm{~m} \times 6 \mathrm{~m}$ as per IS Code. The edge of the slab are simply supported and corners are not held down. The live load on the slab is $3000 \mathrm{~N} / \mathrm{m} 2$. The slab has bearing of 150 mm on the supporting walls. Use M20 concrete and $\mathrm{Fe}-415$ steel. Use limit state method.
2 Calculate the design compressive load for a stanchion $350 @ 710.2 \mathrm{~N} / \mathrm{m}, 3.5 \mathrm{~m}$ high. The column is restrained in direction and position at both ends. It is to be used as an uncased column in a single storey building. Use steel of grade Fe-410.

