KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food. Engg) 2011 Admission Vth Semester Final Examination- December /January -2013

Cat. No: Meen.3106 Title: Systems Engineering (2+0)	Marks: 80 Time: 3 hours
art A (1 Mark each) 10 x 1.0 = 10.0	
ill in the blanks	
. A constraint that does not affect the feasible region is called	
2. The proportion of time a server actually spends with customers is ter	med as

- The process of reducing the time required for an activity by providing additional resources is called ------
- 4. The activity having next highest float than the critical activity is called -----
- 5. The dual of a dual problem is -----
- The portion of total float which, which causes reduction in the float of subsequent activities is called ------

For question 7 to 10, select the best option from the following set

(Exponential distribution, Poissons distribution, Game theory, Maximax theory, Minmax theory, Jockeying, Balking)

- 7. Criterion of Optimism in Decision making Theory.
- 8. Pattern of input or arrival in queuing theory.
- 9. Nature of customer moving from one queue to another.
- 10. Rules governing decision making under conditions of conflict.

Part B (3 Marks each, Answer any 10 questions) 10 x 3.0 = 30.0

- 1. Explain the common types service disciplines.
- 2. Differentiate between free float and independent float.
- 3. How is regret table constructed?
- 4. Discuss the major differences between PERT and CPM.
- 5. What are slack, surplus and artificial variables?

- 6. What is unbalanced transportation problem? How is it modified for finding the feasible solution?
- 7. Explain Expected Monetary Value (EMV)?
- 8. Discuss the various steps involved in decision theory.
- 9. What is the difference between AON and AOA network diagrams?
- 10. Explain the characteristics of canonical form of LPP.
- 11. What is least cost method (LCM) of finding initial feasible solution in a transportation problem?
- 12. Differentiate between Big-M method and Two-Phase Method.

Part C (5 Marks each, Answer any 6 questions) 6 x 5.0 = 30.0

- What is Expected Value of Perfect Information (EVPI)? How is it computed? What is its significance?
- 2. Write the dual of the following LPP.

Minimize Z = 20 X₁ + 40 X₂

Subject to

$$2 X_{1} + 20 X_{2} \ge 40$$

$$20 X_{1} + 3 X_{2} \ge 20$$

$$4 X_{1} + 15 \ge X_{2}$$

$$X_{1}, X_{2} \ge 0$$

A.

3. Solve the following LPP graphically.

Maximize $Z = 2 X_1 + 3 X_2$

Subject to

$$X_1 + X_2 \le 30$$
$$X_2 \ge 3$$
$$X_1 \le 12$$

$$\begin{aligned} X_1 - X_2 &\ge 0 \\ 0 &\le X_1 &\le 20 \end{aligned}$$

 Find the initial feasible solution to the following transportation problem by Vogel's approximation Method and check its optimality.

		Destina	Destinations					
		D1	D2	D3	D4	D5		
Origin O1	2	11	10	3	7	4		
	02	1	4	7	2	1	8	
	O3	3	9	4	8	12	9	
Demand	-	3	3	4	5	6		

- 5. What are the assumptions made in single channel, single phase queuing models?
- 6. A firm manufacturing a nutritional cookie in two sizes S1 and S2. Size S1 contains 4 grains of element X, 7 grains of element Y and 2 grains of element Z. Size S2 contains 2 grains of element X, 10 grains of element Y and 8 grains of element Z. It is found that the users need to take 12 grains of element X, 74 grains of element Y, and 24 grains of element Z to get the required quantity of nutrition. It is required to find the least number of cookies consumed
- by person to get the required level of nutrition. Formulate the problem as a standard LPP.
- 7. Discuss the necessity for maintaining inventory.
- 8. The dependency relationships between various activities are given below. Draw the network diagram.

Activity	A	В	С	D	E	F
Duration (Days)	8	10	12	4	5	7

Immediate	-	-	×	А, В	В	B, C	
Predecessor			1.4		· .		
						-	

Part D (10 Marks each, Answer any 1 question) 1 x 10.0 = 10.0

1. Solve the following LPP

Minimize $Z = X_1 - 3 X_2 + 2 X_3$

Subject to

 $3 X_1 - X_2 + 2 X_3 \ge 7$

 $-2 X_1 + 4 X_2 \le 12$

 $-4 X_1 + 3 X_2 + 8 X_3 \le 10$

 $X_1, X_2, 2X_3 \ge 0$

2. The time estimates in weeks for the activities of a PERT network are given below.

Activity	Optimistic time	Most likely time	Pessimistic time 7	
1-2	1	1		
1-3	1	4	7	
1-4	2	2	8	
2-5	1 .*	1	1	
3-5	2	5	14	
4-6	2	5	8	
5-6	3	6	15	

Draw the critical path and determine the expected project length. What is the probability that the project will be (a) completed at least 4 weeks earlier than the expected time? (b) no more than 4 weeks later than the expected time?