

KERALA AGRICULTURAL UNIVERSITY B.Tech. (Food Engg.) One-Time Re-examination-January-2018 2014 Admission VII Semester Numerical Methods for Engineering Applications (1+1)

Marks: 50 Time: 2 hours (10x1=10)

I Choose the correct answer

- ¹ While solving the equation AX = B, A is transformed into ------ matrix, by Gauss-Jordan method.
 - a An upper triangular b A lower triangular
 - c A diagonal d A unit matrix
- 2 The order of convergence of Newton-Raphson method
 - a 2 b 1 c 0 d None of these

Fill in the Blanks

- ³ If C_1 and C_2 are two real and distinct roots of an auxiliary equation, then the complimentary function is------
- ⁴ If α , β and γ are the roots of $x^3 + 3x + 2 = 0$, then $\sum \alpha^2 = \cdots \ldots \ldots$
- ⁵ If a is a real root of f(x) = 0 lies in [a, b] then the sign of f(a) * f(b) is-----

⁶ The n^{th} difference of an n^{th} degree polynomial is------

- ⁷ $E^{-n}f(x) = \cdots \dots \dots$
- ⁸ By Euler's method, $y_{n=\dots}$
- ⁹ How many positive roots are there for the equation $x^3 + x^2 + x 100 = 0$
- 10 Newton's forward difference formula is applicable for ------ spaced points.
- Answer any FIVE of the following

(5x2=10)

- 1 State Lagrange' formula for interpolation
- ² Define the operators: E and δ
- 3 Define particular solution.

Π

- ⁴ Using bisection method find a real root of $xe^x 3 = 0$
- ⁵ Using Newton-Raphson method x cosx = 0
- ⁶ Determine *a* and *b* so that the equation $x^4 4x^3 + ax^2 + 4x + b = 0$ has two pairs of equal roots. Find the roots.
- ⁷ Prove that $\mu = \frac{\delta^2}{4} + 1$

рто

Ш

Answer any FIVE of the following.

1 Obtain the interpolation polynomial for the given data by using Newton's backward formula

<i>x</i> :	4	6	8	10
<i>y</i> :	1	3	8	16

- ² Solve the difference equation $y_{n+3} 5y_{n+2} + 8y_{n+1} 4y_n = 0$
- ³ Using Taylor series method, find y at x = 0.1, given $\frac{dy}{dx} = \frac{y}{2} + 3x$, y(0) = 1
- ⁴ Using Runge-Kutta method of order 2, find y(1.2) for the equation

$$\frac{dy}{dx} = x^2 + y^2;$$
 $y(1) = 1.5$

⁵ Classify the equation $(1 + x^2)\frac{\partial^2 u}{\partial x^2} + (5 + 2x^2)\frac{\partial^2 u}{\partial x \partial t} + (4 + x^2)\frac{\partial^2 y}{\partial^2 t} = 0$

(ii)

⁶ Evaluate $\int_{1}^{2} x e^{x} dx$ using Trapezoidal and Simpson's rule.

7 Prove the results (i)
$$\Delta \nabla = \delta^2 = \Delta - \delta^2$$

$$\mu \,\delta = \frac{1}{2} (\Delta + \nabla)$$

IV

Answer any ONE of the following

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.2 from the following observations:

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

2

Using Crank-Nicholson method, solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ and u(x,0) = 0; u(0,t) = 0 and u(1,t) = t, for two time steps.

(1x10=10)