KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg.) 2013 Admission One Time Re- Examination-February-2017

Cat. No: Basc.2204.	Marks: 50.00
Title: Numerical Methods for Engineering Applications (1+1)	Time: 2 hours

1	Answer a	ll c	uest	ions

(10x1=10)

- 1. If α, β, γ are the roots of $x^3-3x+2 = 0$, then $\sum \alpha^2 = \cdots$.
- 2. If a is a real root of f(x) = 0 lies in [a,b], then the sign of f(a)*f(b) is ------
- 3. The order of convergence of Newton-Raphson mehod
 - a. 2
 - b. 1
 - c. 0
 - d. none
- 4. If c₁ and c₂ are two real and distinct roots of an auxiliary equation, then the complimentary function is ------.
- While solving the equation AX=B, by Gauss-Jordan method A is transformed into ----matrix.
 - a. An upper triangular
 - b. A lower triangular
 - c. A diagonal
 - d. A unit matrix
- 6. The nth difference of nth degree polynomial is -----.
- 7. $E^{-n} f(x) = -----.$
- 8. By Euler's method, y_n=-----.
- 9. How many positive roots are there for the equation $x^3+x^2+x-100 = 0$.
- 10. Newton's forward difference formula is applicable for ------ spaced points.

II Write short notes/answers on any FIVE of the following

(5x2=10)

- 1. State Lagrange' formula for interpolation.
- 2. Define the operators: E and δ .
- 3. The Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ is ----- equation.
- 4. Define particular solution.
- 5. Using Newton Raphson method x-cos x=0.
- 6. Prove that $\mu = \frac{\delta^2}{4} + 1$
- 7. Obtain the interpolation polynomial for the given data by using Newton's backward formula

x:4 6 8 10 y:1 3 8 16 \mathbf{x}

III Write short answers on any FIVE

(5x4=20)

(1x10=10)

- 1. Using bisection method find a real root of $xe^{x} 3 = 0$
- 2. Determine a and b so that the equation $x^4-4x^3+ax^2+4x+b=0$ has two pairs of equal roots. Find the roots.
- 3. Find the missing term, given

x:1 2 4 7 y:4 7 - 30

4. Using Simpson's rule evaluate $\int_{0}^{n} Sin^{3} x dx$ from the following data :

5. Solve the difference equation $y_{n+3} - 5y_{n+2} + 8y_{n+1} - 4y_n = 0$

6. Using Taylor series method, find y at x=0.1, given $\frac{dy}{dx} = \frac{y}{2} + 3x$, y(0) = 1

7. Using Runge-Kutta method of order 2, find y(1.2) for the equation $\frac{dy}{dx} = x^2 + y^2; y(1) = 1.5$

IV Write essay on any ONE

1. Evaluate $\int_{1}^{2} xe^{x} dx$ using Trapezoidal and Simpson's rule.

2. Using Euler's method, find the value of y(1) given $\frac{dy}{dx} = x + y$; y(0.) = 1 by choosing h= 0.1.
