KERALA AGRICULTURAL UNIVERSITY
 B.Tech.(Food Engr.) 2012 \& Previous Admission
 Re-examination-January-2018

Base. 1102
Engineering Mathematics I (3+0)
Marks: 80
Time: 3 hours
I
Fill in the blanks
1 If λ is an eigen value of a matrix A , then ------------is an eigen value of A^{-1}.
2 The sum of the eigen values of a matrix A is equal to \qquad
3 If $|A|>0$, then the quadratic form $X^{T} A X$ is \qquad
4 Define symmetric matrix.
5 Define rank of a matrix.
6 State L'Hospital's rule for the indeterminate form $\frac{0}{0}$.
$7 \lim _{x \rightarrow 0} \frac{\sin x}{x}=$ \qquad
8 Write the formula for radius of curvature in Cartesian form.
9 If u is a composite function of t defined by $\mathrm{u}=\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{x}=\varphi(\mathrm{t}), \mathrm{y}=\psi(\mathrm{t})$, then the total derivative $\frac{d u}{d t}=$ \qquad
10 If $\delta \mathrm{x}$ is the error in X , then the relative error is-------------
II Write Short notes on any TEN of the following
(10x3=30)
1 If u and v are functions of two independent variables X and y , then define the Jacobian of u, V with respect to X, y.

2 State Cayley Hamilton Theorem.
3 Define homogeneous function.
4 Define a quadratic form.
5 Find the eigen values of the matrix $\left[\begin{array}{cc}1 & -2 \\ -5 & 4\end{array}\right]$.
6 Write the formula for Taylor series expansion of a function about the point X_{0}.
7 Define Gamma function.
8 State Euler's theorem for homogeneous function.
9 Write the matrix of the quadratic form $a^{2}+2 h x y+b y^{2}$.
10 If $\mathrm{u}=\mathrm{x}^{\mathrm{y}}$ find $\frac{\partial^{2} u}{\partial x \partial y}$

11 Write the formula for Maclaurin's series expansion of a function
12 Define Beta function.
III Answer any SIX of the following.
($6 \times 5=30$)
1 Derive the reduction formula for $\int \sin ^{n} \mathrm{x} d \mathrm{x}$.
2 Using the formula for volumes of revolution, derive the volume of a sphere of radius a.
3 Verify Cayley Hamilton Theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and hence find its inverse.
4 Find the rank of the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1\end{array}\right]$ by reducing to its normal form.

5 Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.

6 Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z=x^{3}+y^{3}-3 a x y$.
7 Evaluate $\Gamma\left(\frac{1}{2}\right)$
8
If $\mathbf{u}=\tan ^{-1}(x+y)$, show that $\mathrm{X} \frac{\partial u}{\partial x}+\mathrm{y} \frac{\partial u}{\partial y}=\frac{\sin 2 u}{2}$.
IV Write an essay on any ONE of the following
1 Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to its canonical form and specify the matrix of the transformation.
2 Find the area enclosed between the curves $y^{2}=4 a x$ and $x^{2}=4 a y$ using double integral.

