KERALA AGRICULTURAL UNIVERSITY
 B.Tech (Food.Engg) Degree Programme 2012 \& Previous Admission IV ${ }^{\text {th }}$ Semester Re- Examination- June-July - 2016

Cat. No: Basc. 2209
Title: Numerical methods for Engineering Applications (1+1)
Marks: 80
Time: 3 hours

Part I-Answer all questions

($10 \times 1 / 2=5$ marks)

1. If $f(x)=0$ has no real root between a and $b(a<b)$, then $f(a)$ and $f(b)$ are of same sign (True/ False).
2. If α, β, γ are the roots of $x^{3}+p x^{2}+q x+r=0$, then $\sum \alpha \beta=$ \qquad
3. Write down the relation between ∇ and E.
4. The $(n+1)^{\text {th }}$ difference of a polynomial of degree n is \qquad
5. Define the first divided difference of $f(x)$ for the arguments x_{0}, x_{1}.
6. The error in Simpson's one third rule is of order \qquad
7. The auxiliary equation corresponding to $y_{n+2}-4 y_{n+1}+4 y_{n}=0$ is \qquad
8. $\because \nabla\left(y_{n}\right)=$ \qquad
9. In Euler's method, the actual curve is approximated by a sequence of short straight lines (Yes/ No).
10. The Laplace equation $u_{x t}+u_{y y}=0$ is an example for parabolic equation (True/False).

Part II-Answer all questions

($5 \times 1=5$ marks)

1. Obtain the criteria of convergence in Newton-Raphson method.
2. Write the formula for Trapezoidal rule.
3. State Newton's forward interpolation formula.
4. Define difference equations
5. Classify the pde $\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
6. Solve $x^{3}-15 x^{2}+71 x-105=0$ given that the roots of the equation are in A.P.
7. If α, β, γ are the roots of $x^{3}+p x^{2}+q x+r=0$, find the condition if $\alpha+\beta=0$.
8. Find the root of $4 x-e^{x}=0$ which lies between 2 and 3 by Newton-Raphson method.
9. Show that $\delta=E^{-1 / 2} \Delta$.
10. Find the sixth term of the sequence $8,12,19,29,42, \ldots$.
11. Obtain the divided difference table for

$$
\begin{array}{ccccc}
x: & 0 & 1 & 2 & 4 \\
y: & 443 & 384 & 397 & 467^{\circ}
\end{array}
$$

7. Use Lagrange's formula to fit a polynomial to the data

$$
\begin{array}{ccccc}
x: & -1 & 0 & 2 & 3 \\
y: & -8 & 3 & 1 & 12
\end{array} \text {. }
$$

8. The table below gives the velocity v of a moving particle at time t seconds. Find the acceleration at $t=2$ second.

$$
\begin{array}{cccccccc}
t: & 0 & 2 & 4 & 6 & 8 & 10 & 12 \\
v: & 4 & 6 & 16 & 34 & 60 & 94 & 136^{\circ}
\end{array}
$$

9. Evaluate $\int_{0}^{6} \frac{1}{1+x} d x$ using Simpson's $1 / 3^{\text {d }}$ rule.
10. Obtain the complementary function corresponding to $y_{x+2}-4 y_{x}=9 x^{2}$.
11. Determine the value of $y(0.1)$ by Euler's method, given that $y^{\prime}=-y ; y(0)=1$.
12. Find the real root of $3 x-\cos x-1=0$ by Newton's Raphson method.

Part IV- Answer any 5 questions

1. If α, β, γ are the roots of $x^{3}-14 x+8=0$, find $\sum \alpha^{2}$ and $\sum \alpha^{3}$.
2. Use bisection method to find a positive root which lies in the interval $(1,2)$ of the equation $x^{3}-x=1$, correct to two decimal places.
3. Solve the system of equation by Gauss-Jordan method

$$
x+2 y+z=3,2 x+3 y+3 z=10,3 x-y+2 z=13 .
$$

4. Estimate the population in the year 1946 if the population of a town is as follows:
$\begin{array}{llllllll}\text { Year } x: & 1941 & 1951 & 1961 & 1971 & 1981 & 1991\end{array}$

Population in lakhs $y:$	20	24	29	36	46	51

5. From the following table find $f(6)$ using Newton's divided difference formula:

$$
\begin{array}{lllll}
x: & 1 & 2 & 7 & 8 \\
y: & 1 & 5 & 5 & 4
\end{array} .
$$

6. Find the value of $f^{\prime}(x)$ at $x=56$ from the following;

$$
\begin{array}{cccccccc}
x: & 50 & 51 & 52 & 53 & 54 & 55 & 56 \\
f(x): & 3.684 & 3.7084 & 3.7325 & 3.7563 & 3.7798 & 3.8030 & 3.8259
\end{array} .
$$

7. Solve $\frac{d y}{d x}=x+y$ given $y(1)=0$ and obtain $y(1.1)$ by Taylor series method.

Part V- Answer any one question

$$
(1 \times 10=10 \text { marks })
$$

1. By Crout's method, solve the system

$$
x+y+z=3,2 x-y+3 z=16,3 x+y-z=-3 \text {. }
$$

2. Using Runge-Kutta method of fourth order find $y(0.2)$ given that $y^{\prime}=-y ; y(0)=1$ (Take $h=0.1)$.
