KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg) 2012 Admission IVth Semester One time Special Re-Examination-June -2016

		Cat. No: Basc. 2209 Title: Numerical Methods for Engineering Applications (1+1)	Marks: 80.00 Time: 3 hours
]	[Answer the following	10 x 1 =10
	1. 2. 3.	Newton – Raphson method is also called as Gauss – Jordan elimination method is method Jacobi method is used only formatrices The back-ward operator $\nabla y_n =$	
	5. 6. 7.	Stirling's formula is useful when In Gauss elimination method,the coefficient matrix is transformed to	
T	8. 9. 10	If the eigen values of A are -2,1,0 then the determinant of A is	
	1. 2. 3.	What is the order of convergence in Newton-Raphson method? Gauss – S better than Gauss-Jacobi method why? Write the Newton's backward interpolation formula.	
	4. 5. 6. 7.	Form the divided difference table for the following data: x: 2 5 10 y: 5 29 100 Explain Newton's divided difference.	e)
	8. 9. 10 11 12	Give the complementary function for the different nature of roots Explain Taylor series Give Runge kutta method of fourth order	_ = = £ %

IllAnswer any SIX of the following

Solve $\frac{dy}{dx} = -y$, y(0)=1 to find y (0.01) using Euler's method. 1.

Differentiate interpolation and Extrapolation. 2.

- By applying the Fourth order Runge Kutta method find y(0.2) from $y^1 = y-x$, y(0) = 23. taking h =0.1
- Write Trapezoidal rule for double integrals. 4.
- What is the advantage and disadvantage in Taylor series method ? 5.
- Fit a polynomial to the following data 6. (i)

x :	2	4	6	8	10
v ·	0	0	1	0	0

Use Lagrange's interpolation formula to find Y(9.5) from the following table. (ii)

x	7	8	9	10
у	3	1	1	9

Solve by Gauss-Jacobi method 20x + y - 2z = 17; $3x + 20y - z \neq -18$; 2x - 3y + 20z = 257.

Evaluate $\int e^{-x^2} dx$ by dividing the range of integration in to four equal parts Using (i)

Trapezoidal rule (ii) Simpson's rule

IV Answer any <u>ONE</u> of the following

8.

$1 \ge 10 = 10$

Solve $U_{xx} + U_{yy} = 0$ in $0 \le x \le 4, 0 \le y \le 4$, given that: U(0,y) = 0, U(4,y) = 8 + 2y, 1.

- $U(x,0) = \frac{x^2}{2}$ and U(x,4) = 2, Taking h=k=1. obtain the result, correct to one decimal.
- Use Gauss elimination method and Gauss Jordan method to solve 2. 2x + 3y - z = 5; 4x + 4y - 3z = 3; 2x - 3y + 2z = 2

 $6 \ge 5 = 30$
