KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg) 2012 and Previous Admission IVth Semester Final Examination- (Re-Examination)-June/July -2015

it. No: Cien.2. tle: Mechanic	204 s and Strength of N	Aaterials (2+1)		Marks: 80.00 Time: 3 hour
		PART A	1.5	34 <u>(</u>
I. Fill up	the blanks		(10X1 =	10 marks)
1. The force:	he forces whose lines of action lie on the same plane are known asforces.			
2. Moment c	f inertia of a hollow ly is given by	circular section 'I		
3. A load wh	ich is spread over a ength is	beam in such a ma	nner that it extent v	aries uniformly on
	on on a roller suppor			port
	A frame is said to be redundant when the number of members is more than			
	$nship S = ut + \frac{1}{2}a$			
7. The ordina	te point at which the			
8. The mover	nent of a boat is an a	application of New	ton's la	
	al rigidity of a beam			
	g moment at the sup			
	~ •			
		PART B		
II. Answe	ANY TEN questio	ns	(10X3 = 30 marks)
1. State three	forces principle.		\mathbf{r}^{1}	
	e theorem of paralle	l axis.		
	t notes on types of c			
	Alembert's princip			
	e assumptions made		perfect frames	
	types of beams and			

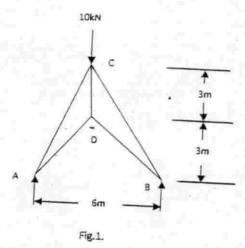
- 7. Derive the relation for time of flight of a projectile on a horizontal plane.
- 8. What is a screw jack? Define pitch and lead of a screw.
- 9. How the moment of inertia of a composite section is determined?
- 10. State the law of conservation of energy. How the energy transfer occurs in the case of an electric heater and electric bulb?
- 11. Discuss about limiting friction.
- 12. Write the assumptions made for deriving torsion formula.

PART C

III. Answer ANY SIX questions

(6 X 5 = 30 marks)

- The following forces act at a point. 20 N inclined at 30⁰ towards North of East, 25 N towards North, 30 N towards North of West and 35 N inclined at 40⁰ towards South of West. Find the magnitude and direction of the resultant force.
- Find the moment of inertia of a T- section having flange and web both 120 mmX 10 mm about XX passing through the CG of the section.
- 3. The principal stresses at a point in a material are 400N/mm² and 1200N/mm² both tensile. Find the normal and shear stresses on a plane inclined at 30 ° to the plane of greater principal stress.
- A cantilever 1.8 m span carries loads of 25 kN, 15kNand 20kN at 0.6 m intervals. Construct the S.F.D and B.M.D.
- A truss member carries an axial³tensile force of 70kN. If the permissible stress in the member is 130 MPa, determine the minimum area of the member required.
- 6. A steel tube, 4m long, having external and internal diameters of 80mm and 50mm respectively, is freely supported at each end and carries a load of W N at a distance of 1.5 m from one end. Evaluate W if the maximum bending stress is not to exceed 120 N/mm².
- Calculate the work done in pulling up a block of wood weighing 2kN for a length of 10m on a smooth plane inclined at an angle of 15° with the horizontal.


8. The angle of twist of a solid shaft, whose diameter is 80 mm was observed to be 0.06 radian on a length of 5m when rotating at 240 rev/min. If $G = 80 \text{ GN/m}^2$, calculate the maximum shear stress and the power transmitted.

PART D

IV. Answer ANY ONE question

 $(1 \times 10 = 10 \text{ marks})$

 A framed structure of 6m span is carrying a central load of 10kN as shown in Fig.1. Find, by any method, the magnitude and nature of forces in all members of the structure.

 A simply supported beam of 4m effective span, has a load of 120kN/m uniformly distributed over 0.5m, 0.75m away from the centre towards the right. Construct the S.F.D and B.M.D.