KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg) 2010 Admission

IV ${ }^{\text {th }}$ Semester Final Examination- July -2013

Cat. No: Basc. 2209
Title: Numerical Methods for Engineering Applications (1+1)

Marks: 80

Part I-Answer all questions
 ($10 \times 1 / 2=5$ marks)

1. If $f(x)=0$ is of even degree and the constant term is negative, then the equation has only one negative root (True/ False).
2. If α, β, γ are the roots of $x^{3}-14 x+8=0$, then $\sum \alpha^{2}=$ \qquad
3. What is the order of convergence in Newton-Raphson method?
4. Write down the relation between Δ and E.
5. The $n^{\text {th }}$ forward differences of a polynomial of degree n are. \qquad
6. Define the second divided difference of $f(x)$ for the arguments x_{0}, x_{1}, x_{2}.
7. What is the restriction for the number of intervals in Simpson's one third rule?
8. If a_{1} and a_{2} are distinct real roots, then the corresponding complementary function of $f(E) y_{x}=0$ is \qquad
9. The Euler's formula is $y(x+h)=$ \qquad
10. The Poisson's equation $u_{x x}+u_{y y}=f(x, y)$ is an example for elliptic equation (True/ False).

Part II-Answer all questions

($5 \times 1=5$ marks)

1. Form the third degree equation, two of whose roots are $1+i$ and 5 .
2. What is the Truncation error in Trapezoidal rule?
3. Define central difference operator and shifting operator.
4. What is the order of $y_{x+3}-5 y_{x+2}+y_{x+1}=0$?
5. Write Newton's forward interpolation formula.

Part III-Answer any 10 questions

1. If α, β, γ are the roots of $x^{3}+p x^{2}+q x+r=0$, find the condition if $\alpha \beta=-1$.
2. Find an iterative formula to find \sqrt{N}, where N is a positive number by NewtonRaphson method.
3. Show that $\mu=\frac{1}{2}\left[E^{\mu / 2}+E^{-\mu / 2}\right]$.
4. Obtain the value of y at $x=76$ from the following data:

$x:$	41	51	61	71	81	91
$y:$	20	24	29	36	46	51

5. Find the missing value of the following table:

$$
\begin{array}{cccccc}
x: & 0 & 1 & 2 & 3 & 4 \\
y: & 1 & 2 & 4 & - & 16
\end{array} .
$$

6. Using Lagrange's interpolation formula, find the parabola of the form $y=a x^{2}+b x+c$ passing through the points $(0,0),(1,1)$ and $(2,20)$.
7. The table below gives the velocity v of a moving particle at time t seconds. Find the acceleration at $t=2$ second.

$$
\begin{array}{lllccccc}
t: & 0 & 2 & 4 & 6 & 8 & 10 & 12 \\
v: & 4 & 6 & 16 & 34 & 60 & 94 & 136
\end{array} \text {. }
$$

8. Evaluate $\int_{-3}^{3} x^{4} d x$ by trapezoidal rule.
9. Define the terms (i) Solution (ii) General solution and (iii) Particular solution of a difference equation.
10. Find the particular integral of $y_{n+2}-4 y_{n+1}+3 y_{n}=3^{n}$.
11. Classify the pde $x f_{x x}+x f_{y y}=0, x>0, y>0$.
12. Write down Crank-Nicholson difference method? What is the purpose of it?
13. Transform the equation $x^{4}-8 x^{3}-x^{2}+68 x+60=0$ into one which does not contain the term x^{3}.
14. Use bisection method to find a positive root which lies in the interval $(1,2)$ of the equation $x^{3}-x=1$, correct to two decimal places.
15. Solve the system of equations by Gauss elimination method

$$
x+2 y+z=3,2 x+3 y+3 z=10,3 x-y+2 z=13 .
$$

4. From the following table find $f(6)$ using Newton's divided difference formula:

$$
\begin{array}{lllll}
x: & 1 & 2 & 7 & 8 \\
y: & 1 & 5 & 5 & 4
\end{array} .
$$

5. Evaluate $I=\int_{0}^{6} \frac{1}{1+x} d x$ using Simpson's rules and compare by direct integration.
6. Solve $y^{\prime}=y-x^{2} ; y(0)=1$ by Picard's iteration method up to third approximation.
7. Compute y at $x=0.25$ by Modified Euler method given $y^{\prime}=2 x y ; y(0)=1$.

Part V- Answer any one question

$$
(1 \times 10=10 \text { marks })
$$

1. By Crout's method, solve the system

$$
2 x+3 y+z=-1,5 x+y+z=9,3 x+2 y+4 z=11 .
$$

2. Using Runge-Kutta method of fourth order find $y(0.2)$ given that $y^{\prime}=x+y ; \quad y(0)=1$ (Take $h=0.1$).
