

Base.1102

KERALA AGRICULTURAL UNIVERSITY B.Tech.(Food Engg.) 2017 Admission I Semester Final Examination-January-2018 Engineering Mathematics I (3+0)

Marks: 50

Time: 2 hours

(10x1=10)

I Fill in the blanks

- ¹ If λ is an eigen value of a matrix A, then ----- is an eigen value of A^{-1} .
- ² The sum of the eigen values of a matrix A is equal to -----
- ³ If |A| > 0, then the quadratic form X^TAX is -----
- $\lim_{x \to 0} \frac{\sin x}{x} = \dots$
- ⁵ If **u** is a composite function of t defined by $\mathbf{u} = \mathbf{f}(\mathbf{x}, \mathbf{y}), \mathbf{x} = \boldsymbol{\varphi}(t), \mathbf{y} = \boldsymbol{\psi}(t)$, then the total derivative $\frac{du}{dt} = -----$
- ⁶ If δx is the error in x, then the relative error is-----

Define the following

- 7 Define symmetric matrix.
- 8 Define rank of a matrix.
- ⁹ State L'Hospital's rule for the indeterminate form $\frac{0}{0}$.
- 10 Write the formula for radius of curvature in Cartesian form.

II Answer any FIVE of the following

1 If u and v are functions of two independent variables x and y, then define the Jacobian of

u, v with respect to x, y.

- 2 State Cayley Hamilton Theorem.
- 3 Define homogeneous function.
- 4 Define a quadratic form.

⁵ Find the eigen values of the matrix
$$\begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$$
.

⁶ Write the formula for Taylor series expansion of a function about the point x_{0} .

7 Define Gamma function.

(5x2=10)

III

5

IV

Answer any FIVE of the following.

- ¹ Derive the reduction formula for $\int sin^n x \, dx$.
- 2 Using the formula for volumes of revolution, derive the volume of a sphere of radius a.
- ³ Verify Cayley Hamilton Theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and hence find its inverse. ⁴ Find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{bmatrix}$ by reducing to its normal form.

Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$.

- ⁶ Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z = x^3 + y^3 3axy$.
- ⁷ Evaluate $\Gamma(\frac{1}{2})$

Answer any ONE of the following

- ¹ Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ to its canonical form and specify the matrix of the transformation.
- 2 Find the area enclosed between the curves $y^2 = 4ax$ and $x^2 = 4ay$ using double integral.

(1x10=10)