

Basc. 1102
Basc.1102

KERALA AGRICULTURAL UNIVERSITY

B.Tech.(Food Engg.) 2017 Admission

I Semester Final Examination-January-2018
Engineering Mathematics I (3+0)
Marks: 50
Time: 2 hours
I Fill in the blanks
$(10 \times 1=10)$
1 If λ is an eigen value of a matrix A, then $\ldots-\cdots$ is an eigen value of A^{-1}.
2 The sum of the eigen values of a matrix A is equal to .-..............
3 If $|\mathrm{A}|>0$, then the quadratic form $\mathrm{X}^{T} \mathrm{AX}$ is \qquad
$4 \lim _{x \rightarrow 0} \frac{\sin x}{x}=$ \qquad
5 If u is a composite function of t defined by $\mathrm{u}=\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{x}=\varphi(\mathrm{t}), \mathrm{y}=\psi(\mathrm{t})$, then the total derivative $\frac{d u}{d t}=$ \qquad
6 If $\delta \mathrm{X}$ is the error in X , then the relative error is---------

Define the following

7 Define symmetric matrix.
8 Define rank of a matrix.
9 State L'Hospital's rule for the indeterminate form $\frac{0}{0}$.
10 Write the formula for radius of curvature in Cartesian form.
II Answer any FIVE of the following
$(5 \times 2=10)$
1 If u and v are functions of two independent variables X and y , then define the Jacobian of u, v with respect to x, y.

2 State Cayley Hamilton Theorem.
3 Define homogeneous function.
4 Define a quadratic form.
5 Find the eigen values of the matrix $\left[\begin{array}{cc}1 & -2 \\ -5 & 4\end{array}\right]$.
6 Write the formula for Taylor series expansion of a function about the point X_{0}.
7 Define Gamma function.

III Answer any FIVE of the following.
1 Derive the reduction formula for $\int \sin ^{n} \mathrm{x} d \mathrm{x}$.
2 Using the formula for volumes of revolution, derive the volume of a sphere of radius a.
Verify Cayley Hamilton Theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and hence find its inverse.
4
Find the rank of the matrix $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1\end{array}\right]$ by reducing to its normal form.
5
Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.
6
Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $\mathrm{z}=\mathrm{x}^{3}+\mathrm{y}^{3}-3 a x y$.
7
Evaluate $\Gamma\left(\frac{1}{2}\right)$
IV Answer any ONE of the following
$(1 \times 10=10)$
1 Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to its canonical form and specify the matrix of the transformation.
2 Find the area enclosed between the curves $y^{2}=4 a x$ and $x^{2}=4 a y$ using double integral.

