KERALA AGRICULTURAL UNIVERSITY

B. Tech (Food.Engg.) 2013 Admission

One Time Re- Examination-February-2017

Cat. No: Basc. 2204.
Marks: 50.00
Title: Numerical Methods for Engineering Applications (1+1)

I Answer all questions

1. If α, β, γ are the roots of $x^{3}-3 x+2=0$, then $\sum \alpha^{2}=$ \qquad
2. If a is a real root of $f(x)=0$ lies in $[a, b]$, then the sign of $f(a) * f(b)$ is \qquad
3. The order of convergence of Newton-Raphson mehod
a. 2
b. 1
c. 0
d. none
4. If c_{1} and c_{2} are two real and distinct roots of an auxiliary equation, then the complimentary function is \qquad
5. While solving the equation $\mathrm{AX}=\mathrm{B}$, by Gauss-Jordan method A is transformed into \qquad matrix.
a. An upper triangular
b. A lower triangular
c. A diagonal
d. A unit matrix
6. The $\mathrm{n}^{\text {th }}$ difference of $\mathrm{n}^{\text {th }}$ degree polynomial is \qquad
7. $E^{-n} f(x)=$ \qquad
8. By Euler's method, $y_{n}=\cdots-\cdots-\cdots-$
9. How many positive roots are there for the equation $x^{3}+x^{2}+x-100=0$.
10. Newton's forward difference formula is applicable for \qquad spaced points.

II Write short notes/answers on any FIVE of the following

1. State Lagrange' formula for interpolation.
2. Define the operators: E and δ.
3. The Laplace's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ is ..---.- equation.
4. Define particular solution.
5. Using Newton - Raphson method $\mathrm{x}-\cos \mathrm{x}=0$.
6. Prove that $\mu=\frac{\delta^{2}}{4}+1$
7. Obtain the interpolation polynomial for the given data by using Newton's backward formula

$\mathrm{x}: 4$	6	8	10
$\mathrm{y}: 1$	3	8	16

1. Using bisection method tind a real root of $\mathrm{xe}^{\mathrm{x}}-3=0$
2. Determine a and b so that the equation $x^{4}-4 x^{3}+a x^{2}+4 x+b=0$ has two pairs of equal roots. Find the roots.
3. Find the missing term, given

$$
\begin{array}{lllc}
\mathrm{x}: 1 & 2 & 4 & 7 \\
\mathrm{y}: 4 & 7 & -30
\end{array}
$$

4. Using Simpson's rule evaluate $\int_{0}^{\pi} \operatorname{Sin}^{3} x d x$ from the following data :

$$
\begin{array}{rcccr}
x: 0 & \frac{\pi}{4} & \frac{\pi}{2} & \frac{3 \pi}{4} & \pi \\
\sin x: 0 & 0.7071 & 1 & 0.7071 & 0
\end{array}
$$

5. Solve the difference equation $y_{n+3}-5 y_{n-2}+8 y_{n+1}-4 y_{n}=0$
6. Using Taylor series method, find y at $\mathrm{x}=0.1$, given $\frac{d y}{d x}=\frac{y}{2}+3 x, y(0)=1$
7. Using Runge-Kutta method of order 2 , find $y(1.2)$ for the equation

$$
\frac{d y}{d x}=x^{2}+y^{2} ; y(1)=1.5
$$

IV Write essay on any ONE

1. Evaluate $\int_{1}^{2} x e^{e} d x$ using Trapezoidal and Simpson's rule.
2. Using Euler's method, find the value of $y(1)$ given $\frac{d y}{d x}=x+y ; y(0)=$.1 by choosing $\mathrm{h}=$ 0.1 .
