KERALA AGRICULTURAL UNIVERSITY

٠

1.

B.Tech (Food.Engg.) 2016 Admission Ist Semester Final Examination-February-2017

Cat. No: Basc.1102. Title: Engineering Mathematics I (3+0)	Marks: 50.00 Time: 2 hours
I Fill in the blanks/State True or False	(10x1=10)
1. The product of the eigenvalues of a matrix $A = \begin{bmatrix} 2 & -3 \\ 4 & -2 \end{bmatrix}$ is	(+++)
2. Bending of a curve at a point is termed as of a curve at t	hat point.
3. If the rank of A \neq rank of augmented matrix K, then the system	ystem of linear
equations are	
4. Define the chain rule for Jacobians.	
5. Write the reduction formula for $\int sin^n x dx$	
6. If y=0 to 1 and x=0 to 3, then evaluate $\iint (x^2 + 3y^2) dy dx$ 7. Find the value of $\Gamma(1/2)$.	
8. Write the parametric equation of a curve cycloid.	
9. Write the condition for $f(x,y)$ to be maximum.	
10.If u= F(x-y, y-z,z-x), then find the value of $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$	
II Write short notes/answers on any FIVE of the following	(5x2=10)
1. Find the A ⁻¹ of a matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$	(0.12 10)
2. How to test the consistency of a system of equations in 'n' unknow	vns.
3. Using Cayley-Hamilton theorem, find the A ⁻¹ of A= $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$	
4. Expand e^{sinx} by Maclaurin's series up to terms containing x^4 .	
5. Find the maximum and minimum values of $3x^4 - 2x^3 - 6x^2 + 6x^2 + 6x^2$ interval (0,2).	-6x+1 in the
6. If $u = x^3 + y^3 - 3axy$, then prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.	
7. Change the order of integration of $\iint f(x, y) dy dx$, if the limits an	re y=x to a and
x=0 to a.	
III Write short answers on any FIVE	(5x4=20)
1. Test whether the following system of equations has the trivial s	
x+2y+3z=0, $3x+4y+4z=0$, $7x+10y+12z=0$.	
2. Let A be the square matrix of order 3 and λ_1 , λ_2 , λ_3 be its eigen va	lues with eigen
vectors X_1 , X_2 , X_3 respectively. Find its diagonal form $D=P^{-1}AP$. 3. Reduce the quadratic form $Q = 2xy+2yz+2zx$ into canonical form.	
 4. Expand e^x by Taylor's series in powers of (x-1) up to 4th term. 	
5. Change the order of integration of $\iint f(x,y)dydx$, if the limits	are v=x to \sqrt{r}
and $x=0$ to 1.	
6. Find the radius of curvature at the point (3a/2,3a/2) of the Folium	$x^3+y^3=3axy.$

8

7. Verify Euler's theorem for $u = x^2yz - 4y^2z^2 + 2xz^3$.

IV Write essay on any ONE

(1x10=10)

- 1. Reduce the quadratic form $Q=2x^2+2y^2+2z^2-2zx$ into canonical from by orthogonal transformation.
- 2. Change the order of integration and evaluate $\iint xydxdy$, if the limits are y=0 to 1 and x=x² to (2-x).
