KERALA AGRICULTURAL UNIVERSITY
 B.Tech (Food. Engg) 2015 Admission
 I ${ }^{\text {st }}$ Semester Final - Examination-January - 2016

Cat. No: Basc. 1102
Title: Engineering Mathematics I (3+0)
Marks: $\mathbf{5 0 . 0 0}$
Time: $\mathbf{2}$ hours
I Answer all questions
($10 \times 1=10$)

1. Elementary transformation do not change the order and also the \qquad
2. \qquad of a matrix is interchanging rows and columns
3. When the system of equations has a solution it is said to be \qquad
4. A square matrix A and its trans pose A^{T} have the same \qquad
5. A homogenous polynomial of the second degree in any number of variables is called \qquad
6. Define J $\left(\frac{u, v}{x, y}\right)$
7. $\int \sin (2 x+3) d x=$ \qquad
8. $\beta(m, n)=\beta(n, m)$ (Trué/False)
9. State Cayley Hamilton theorem
10. Define inverse of a matrix

II Write answers on any FIVE questions

1. Reduce $\left(\begin{array}{ccc}2 & 6 & 5 \\ 2 & 5 & 4 \\ 5 & 16 & 13\end{array}\right)$ to an equivalent upper triangular matrix through row transformation
2. If the rank of $\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 4 & 2 \\ 3 & 5 & k\end{array}\right]$ is 2 . Find the value of k
3. Test for the consistency of $x-y+2 z=2,2 x+y+4 z=7,4 x-y+z=4$
4. Define Eigen values of a matrix
5. When two matrices are said to be similar? Give a property of similar matrices
6. Define curvature and radius of curvature
7. Evaluate $\int_{1}^{2} \int_{0}^{1}\left(x^{2}+y^{2}\right) d x d y$
8. Show that the vectors $(2,3,0),(1,2,0)$ and $(8,13,0)$ are linearly dependent
9. Find the non-trivial solution of the equation $x+2 y+3 z=0,3 x+4 y+4 z=0$, $7 x+10 y+11 z=0$ if it exists
10. How the nature of the quadratic form can be determined without reducing to cannonical form
11. If $\mathrm{u}=\mathrm{f}(x, y)$ where $\mathrm{x}=\mathrm{r} \cos \theta$ and $\mathrm{y}=\mathrm{r} \sin \theta$, find $\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}$
12. Using Taylors series, verify that $\log (1+x+y)=x+y-\frac{1}{2}(x+y)^{2}+\frac{1}{3}(x+$ $y)^{3} \ldots \ldots$
13. Evaluate $\int_{0}^{1} \int_{0}^{1-2} \int_{0}^{1-y-z} x y z d x d y d z$
14. Find the area between the circle $x^{2}+y^{2}=a^{2}$ and the line $x+y=a$ lying in the first quadrant, by double integration

IV Write the answer of any ONE

1. Verify cayley -Hamilton theorem for the matrix $\left(\begin{array}{ccc}2 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right)$ and hence find A^{-1} and A^{4}
2. Evaluate $\iiint d x d y d z$, where v is the finite region of the space (tetra-hedron) formed v by the planes $x=0, y=0, z=0$ and $2 x+3 y+4 z=12$
