KERALA AGRICULTURAL UNIVERSITY
 B. Tech (Food.Engg) 2012 Previous Admission
 I ${ }^{\text {st }}$ Semester Final Examination- January-2015

Cat. No: Basc. 1102
Marks: 80
Title: Engineering Mathematics -I (3+0)

PART I

Answer all Questions

$$
10 \times 1=10
$$

1. What is the determinant of the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 6 & 1 \\ 3 & 6 & 9\end{array}\right)$
2. Define the inverse of a matrix.
3. Is it true that a homogeneous system of equations is alwasaz ansistent.
4. What is the formula for the ratius of curvature of the cruve $y=f(x)$ at any point.
5. Find $\frac{\partial^{2} z}{\partial x^{2}}$ where $\mathrm{z}=x^{3}+y^{3}-3 a x y$
6. Find $\int_{0}^{\frac{\pi}{2}} \cos ^{6} \cdot x d x$
7. What is the formula for the volume of the solid generated by the revolution about the x-axis of the area bounded by the curvo $y=f(x)$, the x-axis and the ordinates $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$.
8. What is $\mathrm{I}\left(\frac{1}{2}\right)$
9. Find limit $t_{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a}$
10. What are the diagonal elements of a skew symmetric mavrix

PART II
Answer any ten Questions

1. Prove that the inverse of a matrix if it exists is unique.
2. Find the rank of the matrix $A=\left(\begin{array}{cccc}0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right)$ by roducing it to the normal form.
3. Test for consistency of the systen of equations $2 x+6 y+11=0,6 x+20$ $y-6 z+3=0,6 y-18 z+1=0$.
4. Evaluate limit $x_{x \rightarrow 0} \frac{\text { lange }}{\text { cotx }}$
5. Find the assymptotes of the curve $x^{2} y^{2}-x^{2} y-x y^{2}+x+y+1=0$
6. If $x=x^{y}$, show that $\frac{\partial^{3} u}{\partial x^{2} \partial y}=\frac{\partial^{3} u}{\partial x \partial y \partial x}$
7. If $z=\log \left(u^{2}+v\right)$ and $u=e^{x^{2}+y^{2}}, v=x^{2}+y$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
8. Given $x+y+z=a$, find the maximum value of $x^{m} y^{n} z^{p}$
9. Evaluate $\int \tan ^{5} x d x$
10. Find the reduction formula for $\int x^{m}(\log x)^{n} d x$
11. Find the volume formed by the revolution of loop of the curve $y^{2}(a+x)=$ $x^{2}(3 a-x)$ about the X -axis.
12. Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} x\left(x^{2}+y^{2}\right) d x d y$

PART III

Answer any six Questions

$$
6 \times 5=30
$$

1. Prove that every square matrix can be uniquely expressed as a sum of a symmetric and skew- symmetric matrix.
2. If $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right)$ Compute adj A and A^{-1}
3. Using Maclaurin's series expand $\tan \mathrm{x}$ upto the term containing x^{5}
4. Show that the radius of curvature at any point of the cycloid $\mathrm{x}=a(\theta+$ $\sin \theta), \mathrm{y}=a(1-\cos \theta)$ is $4 a \cos \frac{\theta}{2}$
5. Trace the curve $x=a \operatorname{Cos}^{3} t, y=a \operatorname{Sin}^{3} t$.
6. Varify Euler's theorem on homogeneous functions for the function $z=$ $x^{n} \log \left(\frac{y}{x}\right)$.
7. Examine the following function for the extreme values $f(x, y)=x^{4}+y^{4}-$ $2 x^{2}+4 x y-2 y^{2}$
8. Obtain the reduction formula for $\int \sin ^{n} x d x$

PART IV

Answer any one Question.

$$
1 \times 10=10
$$

1. a) State cayley hamilton theorem.
b) Find the characteristic equation of the matrix $A=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$ and varify Cayley-Hamilton theorem and hence obtam A^{-1}
c) Determine limit $_{x \rightarrow 0} x \log x$
2. a) Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the planes y $+z=4$ and $z=0$
b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar coordinates
c) Show that $\Gamma(n+1)=n \Gamma(n)$
