KERALA AGRICULTURAL UNIVERSITY B.Tech (Food .Engg) 2013 Admission Ist Semester Final Examination-January 2013

Cat. No: Basc.1102 Fitle: Engineering Mathematics-I (3+0)	Marks: 50 Time; 2hours
Part I	
(Answer all questions)	
 Every square matrix can be uniquely expressed as the sum of a and a matrix. 	
2. Transpose of the product AB of two matrices A and B is equal to	
3. The product of eigen values of a matrix A is equal to	
(a). Trace of A (b). $ \mathbf{A} $ (c). 1 (d). 0	
4. The rank of $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & 0 & 5 & 7 \end{bmatrix}$ is	
5. The nature of the canonical form $2x^2 + 3y^2 + z^2 + 2xy + 4xz - 2yz$ is	
6. If $\mathbf{u} = \mathbf{x}^{\mathbf{y}}$, then $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ is	
(a). 0 (b). yx^{y-1} (c). $x^y \log x$ (d). $x^y \log y$	
7. The value of $\operatorname{Lt}_{x \to \frac{\pi}{2}} \frac{\log \sin x}{\left(\frac{\pi}{2} - x\right)^2}$ is	۸ ۲
8. $\Gamma\left(\frac{1}{2}\right) = \underline{\qquad}$	
9. Curvature of a straight line is	
10. If $\mathbf{J}_1 = \frac{\partial(\mathbf{u}, \mathbf{v})}{\partial(\mathbf{x}, \mathbf{y})}$ and $\mathbf{J}_2 = \frac{\partial(\mathbf{x}, \mathbf{y})}{\partial(\mathbf{u}, \mathbf{v})}$, then $\mathbf{J}_1 \mathbf{J}_2 = \underline{\qquad}$.	
(10 x	1 = 10)
Part II	
(Answer <u>any five</u> questions)	1. A.
1. Write the matrix associated with the quadratic form $x^2 - 4y^2 + 6z^2 + 2xy - 4z^2$	4xz.
2. Expand e^x in powers of $(x-1)$ up to fourth term.	

.3. Evaluate $\operatorname{Lt}_{x\to 0}\left(\frac{x-\sin x}{x^3}\right)$.

4. Verify Euler's theorem for the function $u = x^3 - 2x^2y + 3xy^2 + y^3$.

- 5. Show that the vectors (1,2,2), (2,1,-2) and (2,-2,1) are linearly independent.
- 6. Prove that $\int_{0}^{1} x^{m-1} (1-x^{2})^{n-1} dx = \frac{1}{2} \beta \left(\frac{m}{2}, n \right).$

.7. Obtain the diagonalised matrix associated with $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.

& If $\mathbf{u} = \mathbf{x}^2 - 2\mathbf{y}$ and $\mathbf{v} = \mathbf{x} + \mathbf{y}$, find the Jacobian $\frac{\partial(\mathbf{u}, \mathbf{v})}{\partial(\mathbf{x}, \mathbf{y})}$. (5 x2=10)

Part III

(Answer any five questions)

1. Find the Eigen values and vectors of the matrix $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$. 2. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$.

3. Find the radius of curvature at any point (x, y) on the parabola $y^2 = 4ax$.

- 4. If $u = x^3 + y^3$, where $x = a \cos t$, $y = b \sin t$; find $\frac{du}{dt}$ and verify by direct substitution.
- 5. Trace the curve $y^2(2a-x)=x^3$.
- 6. Evaluate $\iint_{0}^{a} \iint_{0}^{b} \int_{0}^{c} (x^{2} + y^{2} + z^{2}) dx dy dz.$ 7. Evaluate $\iint_{0}^{\frac{\pi}{4}} \sin^{2}x \cos^{4}x dx.$

Part IV

(Answer any one question)

1. Reduce $8x^2 + 7y^2 + 3z^2 - 12xy + 4xz - 8yz$ into canonical form and find its nature.

2. Define Beta function and prove that $\beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$

 $(1 \ge 10 = 10)$

 $(5 \times 4=20)$