KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food .Engg) 2013 Admission

I ${ }^{\text {st }}$ Semester Final Examination-January 2013
Cat. No: Basc. 1102
Marks: 50
Title: Engineering Mathematics-I (3+0)

Part I
 (Answer all questions)

1. Every square matrix can be uniquely expressed as the sum of a \qquad and a \qquad matrix.
2. Transpose of the product $\mathbf{A B}$ of two matrices \mathbf{A} and \mathbf{B} is equal to \qquad -
3. The product of eigen values of a matrix \mathbf{A} is equal to
(a). Trace of \mathbf{A}
(b). $|\mathbf{A}|$
(c). 1
(d). 0
4. The rank of $\mathrm{A}=\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ -2 & 0 & 5 & 7\end{array}\right]$ is \qquad .
5. The nature of the canonical form $2 x^{2}+3 y^{2}+z^{2}+2 x y+4 x z-2 y z$ is \qquad -
6. If $u=x^{y}$, then $\frac{\partial u}{\partial x}$ is
(a). 0
(b). $\mathbf{y x}{ }^{y-1}$
(c). $\mathrm{x}^{y} \log \mathrm{x}$
(d). $x^{y} \log y$
7. The value of $L t_{x \rightarrow \frac{\pi}{2}} \frac{\log \sin x}{\left(\frac{\pi}{2}-x\right)^{2}}$ is \qquad -.
8. $\Gamma\left(\frac{1}{2}\right)=$ \qquad $-$
9. Curvature of a straight line is \qquad -
10. If $\mathbf{J}_{1}=\frac{\partial(\mathbf{u}, \mathbf{v})}{\partial(\mathbf{x}, \mathbf{y})}$ and $\mathbf{J}_{2}=\frac{\partial(\mathbf{x}, \mathbf{y})}{\partial(\mathbf{u}, \mathbf{v})}$, then $\mathbf{J}_{1} \mathbf{J}_{2}=$ \qquad .

$$
(10 \times 1=10)
$$

Part II

(Answer any five questions)

1. Write the matrix associated with the quadratic form $x^{2}-4 y^{2}+6 z^{2}+2 x y-4 x z$.
2. Expand \mathbf{e}^{x} in powers of $(\mathrm{x}-1)$ up to fourth term.
3. Evaluate $\mathrm{Lt}_{\mathrm{x} \rightarrow 0}\left(\frac{\mathrm{x}-\sin \mathrm{x}}{\mathrm{x}^{3}}\right)$.
4. Verify Euler's theorem for the function $u=x^{3}-2 x^{2} y+3 x y^{2}+y^{3}$.
5. Show that the vectors $(1,2,2),(2,1,-2)$ and $(2,-2,1)$ are linearly independent.
6. Prove that $\int_{0}^{1} x^{m-1}\left(1-x^{2}\right)^{n-1} d x=\frac{1}{2} \beta\left(\frac{m}{2}, n\right)$.
.7. Obtain the diagonalised matrix associated with $\mathrm{A}=\left[\begin{array}{rrr}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
7. If $u=x^{2}-2 y$ and $v=x+y$, find the Jacobian $\frac{\partial(u, v)}{\partial(x, y)}$.

Part III

(Answer any five questions)

1. Find the Eigen values and vectors of the matrix $A=\left[\begin{array}{rr}1 & -2 \\ -5 & 4\end{array}\right]$.
2. Verify Cayley-Hamilton theorem for the matrix $\mathbf{A}=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.

3 . Find the radius of curvature at any point (x, y) on the parabola $y^{2}=4 a x$.
4. If $\mathbf{u}=\mathrm{x}^{3}+\mathrm{y}^{3}$, where $\mathrm{x}=\mathbf{a \operatorname { c o s t } ,} \mathrm{y}=\mathrm{b} \operatorname{sint}$; find $\frac{d u}{d t}$ and verify by direct substitution.
5 . Trace the curve $y^{2}(2 a-x)=x^{3}$.
6. Evaluate $\int_{0}^{2} \int_{0}^{b} \int_{0}^{c}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$.
7. Evaluate $\int_{0}^{\frac{\pi}{4}} \sin ^{2} x \cos ^{4} x d x$.

Part IV

(Answer any one question)

1. Reduce $8 x^{2}+7 y^{2}+3 z^{2}-12 x y+4 x z-8 y z$ into canonical form and find its nature.
2. Define Beta function and prove that $\beta(\mathrm{m}, \mathrm{n})=\frac{\Gamma \mathrm{m} \Gamma}{\Gamma(\mathrm{m}+\mathrm{n})}$.

$$
(1 \times 10=10)
$$

