KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food. Engg) 2012 Admission

I st Semester Final Examination- January/February -2013

Cat. No: Basc.1102 Title: Engineering Mathematics -I (3+0) Marks: 80 Time: 3 hours

PART I

Answer all Questions

 $10 \times 1 = 10$

 $10 \times 3 = 30$

1. If A is a saquare matrix of order n, then what is determinant of -A.

- 2. Define symmetric and skew symmetric matrices.
- 3. If A is a non singular matrix of order n , then what is the rank of A.
- 4. What is the curvature of a circle of radius r at any point.
- 5. Evaluate $limit_{x\to 1,y\to 2} \frac{2x^2y}{x^2+y^2+1}$
- 6. Find $\int_0^{\frac{\pi}{2}} \sin^4 x dx$
- 7. What is the length of the arc of the curve y = f(x) between the points x = a and x=b.
- 8. What is the relation between beta and gamma functions.
- 9. What is the value of $\frac{\partial^2 u}{\partial x^2}$ where $u = xy + y^2 + 2xz$.
- 10. Find $limit_{x\to 0} \frac{sinx}{x}$

PART II

Answer any ten Questions

1. If $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -2 \\ -1 & 0 \\ 2 & -1 \end{pmatrix}$. Find the product AB.

- 2. Prove that $(AB)^{-1} = B^{-1}A^{-1}$ where A and B are two square matrices of the same order.
- 3. Test for consistency and then solve 5x + 3y + 7z = 4, 3x + 26y + 2z = 9, 7x + 2y + 10z = 5.
- 4. Evaluate $limt_{x\to 0} \frac{xe^x log(1+x)}{x^2}$
- 5. Define curvature, radius of curvature, and center of curvature of a curve at any point.

6. If
$$u = (x^2 + y^2 + z^2)^{\frac{-1}{2}}$$
, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$

7. If
$$z = f(x,y)$$
 and $x = e^u + e^{-v}$, $y = e^{-u} - e^v$ prove that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$

- 8. If $x = rCos\theta$, and $y = rSin\theta$, then show that $\frac{\partial(x,y)}{\partial(r,\theta)} = r$.
- 9. Evaluate $\int_0^{\frac{\pi}{6}} Cos^4(3\theta) Sin^3(6\theta) d\theta$
- 10. Find the reduction formula for $\int x^n e^{ax} dx$
- 11. Find the volume of the sphere of radius a.
- 12. Find the surface area of the solid generated by revolving the cardiod $r=a(1+\cos\theta)$ about the initial line.

PART III

Answer any six Questions

$$6 \times 5 = 30$$

- 1. Prove that $A^3 4A^2 3A + 11I = 0$ where $A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{pmatrix}$
- 2. Find the inverse of $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$
- 3. Examine the polynomial function given by $f(x) = 10x^6 24x^5 + 15x^4 15x^4$ $40x^3 + 108$ for maximum and minimum values.
- 4. Expand $log(1 + \sin^2 x)$ in powers of x as far as the term x^5
- 5. Find the cordinates of the center of curvature at any point of the parabola $y^2 = 4ax$. Hence show that it's evolute is $27ay^2 = 4(x - 2a)^3$.
- 6. Trace the curve $r=a \sin 3\theta$

7. If
$$u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
 Prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}tanu$.

8. Evaluate $\int_0^a \frac{x^7 dx}{\sqrt{a^2 - x^2}}$

PART IV

Answer any one Question.

 $1 \times 10 = 10$

- 1. a) Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$
 - b) Prove that if λ is an eigenvalue of A, then $\frac{1}{\lambda}$ is an eigen value of A
- 2. a) By changing the order of integration of $\int_0^\infty \int_0^\infty e^{-(xy)} sin(px) dx dy$,
- a) By changing the show that $\int_0^\infty \frac{\sin px}{x} dx = \frac{\pi}{2}$ b) Evaluate $\int \int r \sin \theta dr d\theta$ over the cardiod $r = a(1 \cos \theta)$ above the
 - c) Define Beta function

白苔 化天轮 等口