KERALA AGRICULTURAL UNIVERSITY
 B.Tech (Food. Engg) 2012 Admission
 I ${ }^{\text {st }}$ Semester Final Examination- January/February -2013

Cat. No: Basc. 1102
Marks: 80
Title: Engineering Mathematics -I (3+0)
Time: $\mathbf{3}$ hours

PART I

Answer all Questions

$$
10 \times 1=10
$$

1. If A is a saquare matrix of order n , then what is determinant of -A.
2. Define symmetric and skew symmetric matrices.
3. If A is a non singular matrix of order n , then what is the rank of A .
4. What is the curvature of a circle of radius r at any point.
5. Evaluate limit $_{x \rightarrow 1, y \rightarrow 2} \frac{2 x^{2} y}{x^{2}+y^{2}+1}$
6. Find $\int_{0}^{\frac{\pi}{2}} \sin ^{4} x d x$
7. What is the length of the arc of the curve $y=f(x)$ between the points x $=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$.
8. What is the relation between beta and gamma functions.
9. What is the value of $\frac{\partial^{2} u}{\partial x^{2}}$ where $\mathrm{u}=\mathrm{xy}+y^{2}+2 \mathrm{x}=$.
10. Find $\operatorname{limit}_{x \rightarrow 0} \frac{\sin x}{x}$

PART II
Answer any ten Questions

$$
10 \times 3=30
$$

1. If $A=\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -2 \\ -1 & 0 \\ 2 & -1\end{array}\right)$. Find the product $A B$.
2. Prove that $(A B)^{-1}=B^{-1} A^{-1}$ where A and B are two square matrices of the same order.
3. Test for consistency and then solve $5 \mathrm{x}+3 \mathrm{y}+7 \mathrm{z}=4,3 \mathrm{x}+26 \mathrm{y}+2 \mathrm{z}=9$, $7 x+2 y+10 z=5$.
4. Evaluate $\lim _{x \rightarrow 0} \frac{x^{*}-\log (1+x)}{x^{2}}$
5. Define curvature, radius of curvature, and center of curvature of a curve at any point.
6. If $u=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-1}{2}}$, prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial \bar{z}^{2}}=0$
7. If $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ and $x=e^{u}+e^{-v}, y=e^{-u}-e^{\nu}$ prove thait $\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v}=x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}$
8. If $x=r \operatorname{Cos} \theta$, and $y=r \operatorname{Sin} \theta$, then show that $\frac{\partial(x, y)}{\partial(r, \theta)}=r$.
9. Evaluate $\int_{0}^{\frac{\pi}{6}} \operatorname{Cos}^{4}(3 \theta) \operatorname{Sin}^{3}(6 \theta) d \theta$
10. Find the reduction formula for $\int x^{n} e^{a x} d x$
11. Find the volume of the sphere of radius a.
12. Find the surface area of the solid generated by revolving the cardiod $\mathrm{r}=\mathrm{a}(1+\cos \theta)$ about the initial line.

PART III

Answer any six Questions

$$
6 \times 5=30
$$

1. Prove that $A^{3}-4 A^{2}-3 A+11 I=0$ where $A=\left(\begin{array}{ccc}1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3\end{array}\right)$
2. Find the inverse of $A=\left(\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right)$
3. Examine the polynomial function given by $f(x)=10 x^{6}-24 x^{5}+15 x^{4}-$ $40 x^{3}+108$ for maximum and minimum values .
4. Expand $\log \left(1+\sin ^{2} x\right)$ in powers of x as far as the term x^{5}
5. Find the cordinates of the center of curvature at any point of the parabola $y^{2}=4 a x$. Hence show that it's evolute is $27 a y^{2}=4(x-2 a)^{3}$.
6. Trace the curve $\mathrm{r}=\mathrm{a} \sin 3 \theta$
7. If $u=\sin ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ Prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$.
8. Evaluate $\int_{0}^{a} \frac{x^{7} d x}{\sqrt{a^{2}-x^{2}}}$

PART IV

Answer any one Question.

$$
1 \times 10=10
$$

1. a) Find the eigen values and eigen vectors of the matrix $A=\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right)$
b) Prove that if λ is an eigenvalue of A, then $\frac{1}{\lambda}$ is an eigen value of A^{-1}
2. a) By changing the order of integration of $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x y)} \sin (p x) d x d y$, show that $\int_{0}^{\infty} \frac{\sin p x}{x} d x=\frac{\pi}{2}$
b) Evaluate $\iint^{x} r \sin \theta d r d \theta$ over the cardiod $r=a(1-\cos \theta)$ above the initial line.
c) Define Beta function
