KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg) 2012 Admission IInd Semester One time Special Re-Examination-June -2016

Cat. No: Meen. 1203 Marks: 80.00 Title: Engineering Thermodynamics (2+1) Time: 3 hours

		· · · · · · · · · · · · · · · · · · ·
1.		Fill up the blanks and state true or false $(10x1 = 10)$
	1.	Thermo couple is working based on the principle of effect.
	2.	The air standard efficiency of Otto cycle is given by the expression
	3.	The is a point in P-V-T space defined by the highest possible
		temperature and the highest possible pressure for which distinct liquid and gas
		phases can be observed.
e.	4.	Entropy may be measured as a function of and
	5.	For atmospheric air 'Cp/Cv' is equal to
	6.	A closed system goes from state 1 to state 2 in a process for which Q= 0 and
		W= 100 kJ. Then the ststem is returned to state 1 in a second process for which
		W= - 80 kJ. The heat transfer for the second process will be
	7.	The characteristic equation of a gas is
	8.	The value of universal gas constant is J/kg/K.
	9.	An ideal gas undergoes a process in which PV ⁿ = constant. When n = 1 it may
		also be called
	10.	A device that transfers heat from a body at a lower temperature to a body at
		higher temperature is
II.		Write short notes on ANY TEN (10x3 = 30)
	1.	Differentiate intensive and extensive properties.
	2.	Draw the P-T diagram of a pure substance.
	3.	What is Quasi – static process?
	4.	311.0 0
	5.	Differentiate positive and negative heat transfer.
	6.	Define super heated steam.
	7.	Define mechanical equilibrium.
	8.	
	9.	Define latent heat of vapourization.

- 10. Define Isentropic process.
- 11. What is two-stage compressor?
- 12. Draw the P-T diagram of a pure substance.

III. Write short essays on ANY SIX

(6x5 = 30)

1. Write on constant volume process with P-V-T relationship.

22

- What is meant by volumetric efficiency of a compressor? Explain how the clearance affects it.
- Establish the inequality of Clausius.
- Explain the work done of an adiabatic process with a P-V diagram.
- Explain free expansion process.
- Determine the volume coupled by a given mass of air occupies 2 cubic meter at 15°C. The pressure remains unchanged.
- 7. 5 kg of nitrogen is heated in a reversible, non-flow, constant volume process, till the pressure becomes three times the initial. The initial temperature was 100°C. Determine (i) the final temperature (ii) the change in internal energy (iii) the change in enthalpy (iv) the heat transfer.

Assume $c_0 = 1.04 \text{ kJ/kgKc}_v = 0.743 \text{ kJ/kgK}$.

Write short notes on second law of thermodynamics.

IV. Write essay on ANY ONE

(1x10 = 10)

- Derive the expression for efficiency of Duel combustion cycle with neat sketch.
- A system contains 0.15m³ of a gas at a pressure of 3.8 bar and 150°C. It is expanded adiabatically till the pressure falls to 1 bar. The gas is then heated at a constant pressure till its enthalpy increases by 70 kJ. Determine the total work done. Take C_p = 1 kJ/kg K and C_v = 0.714 kJ/kg K.