KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food . Engg) Degree Programme 2012 and Previous Admission IInd Semester Re-Examination- June – July 2016

	No: Basc 1205 Engineering Mathematics II (3+0)	Marks: 80.00
	sugareering tradicinatics if (5 (0)	Time: 3 hours
ļ	Answer all the Questions 1. The geometric series $a + ar + ar^2 +$ to ∞ is 2. For the series $u_1+u_2++u_n+$, the condition $\underset{n \to \infty}{Lt} u_n =$	10 x1 = 10 if $r < 1$. or = 0 is a necessary and sufficient
	condition. (True/ false) 3. If $Lt \frac{u_n}{v_n} = 0$ and $\sum v_n$ is divergent, then $\sum u_n$ is also 4. The of a differential equation is the or coefficient which occurs in it.	ž
	5. Given the differential equations $M(x,y) dx + N(x,y)$) dy = 0. If $\frac{1}{N} \left(\frac{\partial M}{\partial v} - \frac{\partial N}{\partial x} \right)$ is a
ł	 function of x, alone say f(x), then is an integration of x. The general solution of Cliraut's equation y= cx+f(c) of as family of, c being the parameter 	tegrating factor. can be interpreted geometrically
	Bessels function of order n of the second kind is also called the An equation involving partial differential coefficients of a function of two or more variables is known as	
	 One dimensional heat equation is The complete solution of y"- 4 y'+ 4y =0 is 	
	Write short notes on ANY TEN 1. Define Divergence of series.	10 x 3 =30
	 Define alternative series. Define Cauchy's root test. Define Raabe's test Define Integrating factor. Define Bernoulli's equation. Define Bessel's function of the second kind of order n 	je.
	 Solve (y- px) (p-1) = p Find a complete integral of z = pq Express 2-3x+4x² in terms of Legendre polynomial. An rod 30 cm long has its ends A and B kept at 20⁰C as state conditions prevail. Find the steady state temperatu Write correction and additional of the Lonlace equation up 	ire in the rod

 Write any two solutions of the Laplace equation u_{xx}+u_{yy} =0 involving exponential terms in x or y.

Write short essays on ANY SIX of the following

- 1. Prove that the series $\sum_{n=0}^{\infty} \frac{n^3 + a}{2^n + a}$ is convergent by using D'Alembert's ratio test.
- 2. Test the convergence of the $\left(\frac{2^2}{1^2}, -\frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3}, -\frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4}, -\frac{4}{3}\right)^{-3} + \frac{1}{44}$
- 3. Solve $(ye^{xy} 2y^3)dx + (xe^{xy} 6xy^2 2y)dy = 0$
- 4. Explain the rules for finding integrating factors.

5. Solve
$$p^3 + 2xp^2 - y^2p^2 - 2xy^2p = 0$$
.

- 6.. Solve $\frac{dx}{dt} \frac{dy}{dt} y = -e^t$, $x + \frac{dy}{dt} y = e^{2t}$
- 7. Obtain the solution of the wave equation using the method of separation of variables.
- 8. Solve $z(x-y) = x^2 p y^2 q$ using method of multipliers

Write essay on ANY ONE

1.

111

- Solve $y^1 + y = \sin x$ using the method of variation of parameters.
- 2. Find the steady state temperature at any point of a square plate whose two adjacent edges are kept at 0°C and the other two edges are kept at the constant temperature 100°C.

1 x 10 =10