# KERALA AGRICULTURAL UNIVERSITY <br> B.Tech (Food . Engg) Degree Programme 2012 and Previous Admission <br> II ${ }^{\text {nd }}$ Semester Re-Examination- June - July 2016 

Cat. No: Basc 1205
Title: Engineering Mathematics II (3+0)
Marks: $\mathbf{8 0 . 0 0}$
Time: 3 hours

## I

Answer all the Questions
$10 \times 1=10$

1. The geometric series $a+a r+\mathrm{ar}^{2}+\ldots$ to $\infty$ is $\qquad$ if $\mathrm{r}<1$.
2. For the series $\mathrm{u}_{1}+\mathrm{u}_{2}+\ldots+\mathrm{u}_{\mathrm{n}}+\ldots$, the condition $\underset{n \rightarrow \infty}{\operatorname{Lt}} u_{n}=0$ is a necessary and sufficient condition. (True/ false)
3. If $\underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{u_{n}}{v_{n}}=0$ and $\sum v_{n}$ is divergent, then $\sum u_{n}$ is also $\qquad$
4. The $\qquad$ of a differential equation is the order of the highest differential coefficient which occurs in it.
5. Given the differential equations $\mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx}+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy}=0$. If $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)$ is a function of $x$, alone say $f(x)$, then $\qquad$ is an integrating factor.
6. The general solution of Cliraut's equation $y=c x+f(c)$ can be interpreted geometrically as family of $\qquad$ , c being the parameter
7. Bessels function of order $n$ of the second kind is also called the $\qquad$
8. An equation involving partial differential coefficients of a function of two or more variables is known as $\qquad$
9. One dimensional heat equation is $\qquad$
$\qquad$ -
10. The complete solution of $y^{\prime \prime}-4 y^{\prime}+4 y=0$ is

II Write short notes on ANY TEN
$10 \times 3=30$

1. Define Divergence of series.
2. Define alternative series.
3. Define Cauchy's root test.
4. Define Raabe's test
5. Define Integrating factor.
6. Define Bernoulli's equation.
7. Define Bessel's function of the second kind of order $n$
8. Solve $(y-p x)(p-1)=p$
9. Find a complete integral of $\mathrm{z}=\mathrm{pq}$
10. Express $2-3 x+4 x^{2}$ in terms of Legendre polynomial.
11. An rod 30 cm long has its ends A and B kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. Find the steady state temperature in the rod..
12. Write any two solutions of the Laplace equation $u_{x x}+u_{y y}=0$ involving exponential terms in x or y .
13. Prove that the series $\sum_{n=0}^{\infty} \frac{n^{3}+a}{2^{n}+a}$ is convergent by using D'Alembert's ratio test.
14. Test the convergence of the $\left(\frac{2^{2}}{1^{25}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+\ldots$
15. Solve $\left(y e^{x y}-2 y^{3}\right) d x+\left(x e^{x y}-6 x y^{2}-2 y\right) d y=0$
16. Explain the rules for finding integrating factors.
17. Solve $p^{3}+2 x p^{2}-y^{2} p^{2}-2 x y^{2} p=0$.
6.. Solve $\frac{d x}{d t}-\frac{d y}{d t}-y=-e^{t}, x+\frac{d y}{d t}-y=e^{2 t}$
18. Obtain the solution of the wave equation using the method of separation of variables.
19. Solve $z(x-y)=x^{2} p-y^{2} q$ using method of multipliers

## TV Write essay on ANY ONE

1. Solve $y^{1}+y=\sin x$ using the method of variation of parameters.
2. Find the steady state temperature at any point of a square plate whose two adjacent edges are kept at $0^{\circ} \mathrm{C}$ and the other two edges are kept at the constant temperature $100^{\circ} \mathrm{C}$.
