KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food .Engg) 2011 Admission

II ${ }^{\text {nd }}$ Semester Special Re-Examination- June -2015
Cat. No: Basc. 1205
Marks: 80.00
Title: Engineering Mathematics-II (3+0)
I.
a) Fill up the blanks for the following

1. If $|x|<1$, then the geometric series $1+x+x^{2}+\cdots$ converges and diverges if
2. If the series $u_{1}+u_{z}+u_{3}+\cdots=\sum_{i=1}^{\infty} u_{i}$ converges then $\lim _{n \rightarrow \infty} u_{n}=$ \qquad
3. $\frac{1}{D^{2}-3 D+2} e^{x}=$ \qquad
b) Write down one dimensional wave equation
c) Match the following
A
B
4. Bernoulli's differential equation
1) $(a x+b)^{2} \frac{d^{2} y}{d x^{2}}+K_{1}(a x+b) \frac{d y}{d x}+K_{2} y=g(x)$
6. Clairaut's equation
2) $y^{\prime}+P(x) y=Q(x) y^{z^{\prime}}$
7. Lagrange's linear equation
3) $y=P(x)+f(y)$ where $p=\frac{d y}{d x}$
8. Legendre's linear equation
4) $P(x, y, z) \frac{\partial z}{\partial x}+Q(x, y, z) \frac{\partial z}{\partial v}=R(x, y, z)$
d) Write True or False for the following
9. Wave equation $C^{2} \frac{d^{2} u}{d x^{2}}=\frac{d^{2} u}{d t^{2}}$ is hyperbolic.
10. $x=0$ is a regular point of $y^{\prime \prime}+x y=0$

PART B

(Answer any Ten questions, each carries 3 marks)
II)

1. Test the convergence of the series $\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\cdots$
2. Explain Raabe's test.
3. Explain Cauchy's root test and integral test.
4. Test for convergence or divergence of the series $\frac{1}{1+3}+\frac{2}{1+3^{2}}+\frac{3}{1+3^{z}}+\cdots$
5. Solve $\bar{z}\left(D \rrbracket^{2}+D-2\right) y=\sin x$
6. Find the particular integral of $\bar{Z}\left(D \rrbracket^{2}-D-2\right) y=\sin 2 x+e^{x}$
7. Show that one dimensional heat equation is parabolic.
8. Find $P_{2}(x)$ from $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$
9. Show that $\left(3 x^{2}+6 x y^{2}\right) d x+\left(6 x^{2} y+4 y^{2}\right) d y=0$ is exact.
10. Solve the Lagrange's linear equation $p \sqrt{x}+q \sqrt{y}=\sqrt{z}$
11. Solve $p q=p+q$
12. Show that $u=e^{x} \sin y$ satisfy Laplace's equation.

PART C

(Answer any Sixquestions, each carries 5 marks)
III)

1. Test for convergence or divergence the series $\frac{1}{1.3 .5}+\frac{2}{3.5 .7}+\frac{3}{5.7 .9}+\cdots$.
2. Show that the series $\sum_{n=0}^{\infty} \frac{n^{2}+1}{5^{n}+1}$ converges
3. Test the convergence of the series $1+\left(\frac{1}{2}\right)^{2}+\left(\frac{1.3}{2.4}\right)^{2}+\left(\frac{1.3 .5}{2.4 .6}\right)^{2}+\ldots$
4. Solve $\left.(2 x y+y-\tan \llbracket y) d x+\left(x^{2}-x \tan ^{2} y+\sec ^{2} y\right) d y=0\right]$
5. Solve by the method of variation of parameters $\frac{d^{2} y}{d x^{2}}+y=x$
6. Solve $y^{\prime \prime}+x^{2} y=0$ by power series method
7. Solve $\left(D^{2}-3 D+2\right) y=6 e^{-3 x}+\sin 2 x$
8. Solve $2 z x-p x^{2}-2 q x y+p q=0$ using Charpit's method.

PART D
(Answer any One questions, each carries 10 marks)

1. Solve the Bessel's equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$
2. Derive one dimensional heat equation and find its general solution.
