KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food, Engg) Programme

Cat. No: Base.1205 Title: Engineering Mathe	ematics II (3+0)	Marks: 80 Time: 3 hours
	PART A	
(An	swer all questions, each carries 1 mark)	æ.
has a second second		
.a) Fill up the blanks for the following		
1. Every sequence which is monoton	nic and bounded is	P
2. Geometric series $1 + x + x^2 + x^3 + x^3$	$-x^4 + \dots \infty$ converges in the interval \dots	
3. General solution of $\frac{dy}{dx} = y$ is		
1. Particular integral of $CD^2 - 2D +$	$(1) = e^{2x} + \dots$	
b) Match the following		
A	B	
5. $x^2 y'' - xy' + y = \log x$	(I) .one dimensional heat equation	1
6. $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	(II). One dimensional wave equation	on
7. $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$	(III) .Two dimensional heat equatio	n
8. $\frac{\partial y}{\partial t} = c^2 \frac{\partial^2 y}{\partial x^2}$	(IV).Cauchy's homogeneous linear	equation
c) Write True or False for the followin	g	
9. The exponential series $1 + \frac{x}{1!} + \frac{x^2}{2!}$	$+\frac{x^3}{3!}+\dots\infty$ is also hereby convergent	
10. The general solution of $(D^2 - D)$	$(-2)y = 0$ is $y = c_1 e' + c_2 e^{-2t}$	
	PART B	(10 X 1 =

(Answer any ten questions, each carries 3 marks)

II 1. Explain the ratio test in the context of series convergence

2. Write down the condition for the convergence and divergence of the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$

3. Define absolute convergence

. ... is divergent 4. Show that the series $1 + 2 + 3 + 4 + 5 + 6 \dots$

5. Write the general form of CLAIRAUT'S equation

6. Solve
$$\frac{dy}{dx} = \frac{x}{y}$$

7. Find the complementary function of $(D^2 + 1)y = \sin 3x$

8. Write down the general form of Legendre's linear equation

9. Define the ordinary point of a general second order linear differential equation

10. Show that
$$\frac{dy}{dx} = e^{x-y}$$
 is exact

11.Solve $\frac{\partial^2 z}{\partial x \partial y} = xy$

12. Write an example for Lagrange's linear differential equation

(10 X 3 = 30)

PART C

(Answer any six questions, each carries 5 marks)

III. 1.Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$

- 2. Test for the convergence $\sum (\log n)^{-2}$
- 3. Solve $x \frac{dy}{dx} + y = x^3 y^6$
- 4. Solve $ye^{xy}dx + (xe^{xy} + 2y)dy = 0$

5. Solve $(D^2 - 4D + 4)y = \sin 4x + e^{3x}$

- 6. Solve $\frac{d^2 y}{dx^2} = y$ by power series method
- 7. solve $\frac{d^2 y}{dx^2} + y = \tan x$, using method of variation of parameters
- 8. Form the partial differential equation from $Z = f(x^2 y^2)$ by eliminating arbitrary function

(6 X 5 = 30)

PART D

(Answer any one question which carries 10 marks)

IV. 1. Explain the Raabe's test. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1.5.9...(4n-3)}{2.6.10....(4n-2)} x^{n}$

2. Derive one dimensional wave equation and find its general solution.

(1 X 10 = 10)