

Cien. 2103

I

Π

KERALA AGRICULTURAL UNIVERSITY B.Tech.(Food Engg.) 2017 Admission III Semester Final Examination-Janauary-2019

Fluid Mechanics (2+1)

Marks: 50 Time: 2 hours

P.T.O

	Fill in the blanks: (10x1=10)
1	The unit of coefficient of viscosity in SI unit is
2	The specific gravity of oil, having specific weight of 7.848 kN/m ³ , is
3	Current meter is a device used to measure
4	The laminar flow between parallel flat plates, when one plate is moving at uniform velocity and
4	the other one is at rest is known as flow.
5	The side slope (H:V) of Cipoletti weir is
5	Choose the Correct answer
6	The dimension of pressure is:
0	a $M^{1}L^{1}T^{-1}$ b $M^{1}L^{-1}T^{-1}$ c $M^{1}L^{-1}T^{-2}$ d $M^{1}L^{-2}T^{-1}$
7	Inter-molecular attraction between the molecules of the same liquid is known as:
	a surface tension b cohesion c adhesion d capillarity
8	Whenever a body, floating in a liquid, is given a small angular displacement, it starts oscillating
	about some point, which is known as:
	a centre of buoyancy b metacentre c centre of pressure d centre of gravity
9	The two dimensional equation of an equipotential line is given by:
	a $vdy + udx = 0$ b $udy - vdx = 0$ c $udy + vdx = 0$ d $vdy - udx = 0$
10	The square root of Cauchy number is known as:
	a Newton number b Weber number c Mach number d Euler number
	Write Short notes on ANY FIVE of the following (5x2=10)
1	Differentiate between ideal fluid and real fluid.
2	A rectangular tank 5 m long, 2 m wide contains water up to a depth of 2.5 m. Calculate the total
	pressure on the base of the tank.
3	Buoyancy and floatation.
4	A differential manometer connected at two points at the same level in a pipe containing oil of
	specific gravity 0.8 shows a difference in mercury level as 100 mm. Determine the difference in
	pressure between the two points.
5	Differentiate between Lagrangian method and Eulerian method
	Show that the two dimensional flow represented by velocity components u = 8xy and
6	
6	$v = 4x^2 - 4y^2$, satisfies the equation of continuity.

(5x4=20)

(1x10=10)

Answer ANY FIVE of the following

- 1 A wooden block of rectangular section 1.25 m wide, 2 m deep and 4 m long floats horizontally in sea water. If the specific gravity of wood is 0.64 and sea water weighs 10.05 kN/m³, find the volume of water displaced and the position of the centre of buoyancy.
- Define streamline. Prove that at any point of intersection it is orthogonal to an equipotential line.
 The diameter of a pipe changes from 200 mm at a section 5 m above datum to 50 mm at a section 3 m above datum. The pressure of water at the first section is 500 kN/m². If the velocity of flow at the first section is 1 m/s, determine the intensity of pressure at the second section.
- 4 Derive Darcy-Weisbach equation for flow through a long pipeline running full of water.
- 5 Define vortex motion. Classify and discuss about various types of vortex motions.
- 6 Water flows at the rate of 0.147 m³/s through a 15 cm diameter orifice inserted in a 30 cm diameter pipe. If the pressure gauge fitted upstream and downstream of the orifice plate have shown readings of 176.58 kN/m² and 88.29 kN/m², respectively, find the coefficient of discharge of the orifice meter.
- 7 With neat sketch derive the expression for total pressure acting on a vertical plane surface submerged in water.

IV Answer ANY ONE of the following

- Rayleigh method to establish the expression for coefficient of discharge of an orifice of diameter d. Consider that water is flowing at a rate of Q through the orifice under a constant head of H. Take ρ as the mass density and μ as the dynamic viscosity of water.
- 2 Principle of conservation of mass to derive the three dimensional continuity equations in cartesian co-ordinates for steady flow of an incompressible fluid.

Ш