KERALA AGRICULTURAL UNIVERSITY
 B.Tech.(Food Engg.) 2018 Admission
 III Semester Final Examination-December 2019

Basc. 2108
Engineering Mathematics III (2+1)
Marks:50
Time: 2 hours

Choose the Correct answer

($10 \times 1=10$)

1. Stokes theorem convers \qquad
a) Line integral into surface integral
b) Surface integral to volume integral
c) Line integral to volume integral
d) None of these
2. If C is the triangle with vertices $(0,0,0),(1,0,0),(1,1,0)$ then $\int_{C} y^{2} d x+x^{2} d y=$ \qquad
a) 0
b) 1
c) $1 / 2$
d) $1 / 3$
3. $\int(u d x+v d y)=$ \qquad
a) $\iint_{R}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) d x d y$
b) $\iint_{\mathbf{R}}\left(\frac{\partial u}{\partial \mathbf{x}}+\frac{\partial v}{\partial y}\right) d x d y$
c) $\iint_{\mathbf{R}}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y$
d) $\iint_{\mathbf{R}}\left(\frac{\partial v}{\partial \mathbf{x}}+\frac{\partial \mathbf{u}}{\partial \mathbf{y}}\right) \mathrm{dxdy}$
4. What is the period of $\tan (x)$
a) π
b) 2π
c) $\pi / 2$
d) None of these
5. Which function cannot be expanded in Fourier series?
a) $\sin (x)$
b) $\cos (\mathrm{x})$
c) $\tan (x)$
d) None of these
6. If \qquad , then $f(x)$ is self reciprocal under Fourier transform.
a) $\quad \mathrm{F}[\mathrm{f}(\mathrm{x})]=\mathrm{f}(\mathrm{s})$
b) $\mathrm{F}[\mathrm{f}(\mathrm{x})] \neq \mathrm{f}(\mathrm{s})$
c) $\mathbf{F}[\mathrm{f}(\mathrm{x})] \geq \mathrm{f}(\mathrm{s})$
d) None of these
7. The real and imaginary parts of an analytic function are \qquad .
8. The complex function $\mathrm{w}=\mathrm{az}$ when ' a ' is a complex constant geometrically implies
a) Rotation
b) Rotation and Magnification
c) Rotation and Reflection
d) None of these

Define

9. What is invariant point in a mapping?
10. State Cauchy's Integral Theorem.
11. Find an analytic function whose imaginary part is $3 x^{2} y-y^{3}$.
12. Find the residue at $\mathrm{z}=0$ of the function $\mathrm{f}(\mathrm{z})=\frac{1+\mathrm{e}^{z}}{\mathrm{z} \cos \mathrm{z}+\sin \mathrm{z}}$.
13. Expand $\mathrm{f}(\mathrm{x})=1$ in a sine series in $0<\mathrm{x}<\pi$.
14. What do you mean by Harmonic Analysis?
15. $\operatorname{Grad}\left(3 y^{2} z-x^{3} z+4 x z=10\right)$ at $(-1,2,1)$?
16. If $\overrightarrow{\mathbf{r}}=\boldsymbol{x} \overline{\mathbf{i}}+\mathbf{y} \overline{\mathbf{j}}+\mathbf{z} \overrightarrow{\mathbf{k}}$, then find $\nabla \mathbf{f}(\mathbf{r})$?
17. If V is the volume of the region enclosed by the cube $0<x, y, z<1$ and $\overline{\mathbf{F}}=x^{2} \overline{\mathbf{i}}+\mathbf{y}^{2} \overline{\mathbf{j}}+\mathbf{z}^{2} \overline{\mathbf{k}}$ then find $\iiint_{V} \nabla \cdot \bar{F} d V$.
18. If $\overrightarrow{\mathbf{F}}=\boldsymbol{x}^{2} \overrightarrow{\mathbf{i}}+\mathbf{y}^{2} \overline{\mathbf{j}}+\mathbf{z}^{2} \overline{\mathbf{k}}$, then find $\nabla \cdot \overrightarrow{\mathbf{F}}$ and $\nabla \times \overline{\mathbf{F}}$.
19. Evaluate by Stoke's Theorem $\int_{C}\left(e^{x} d x+2 y d y-d z\right)$, where C is the curve $\mathbf{x}^{2}+\mathbf{y}^{2}=4, z=2$.
20. Find the complex form of the Fourier Series $\mathbf{f}(\mathbf{x})=\cos (\mathbf{a x}) ;-\pi<\mathbf{x}<\pi$.
21. Compute the first two harmonics of the Fourier Series for $f(x)$ from the following data

x	0	30	60	90	120	150	180
$\mathrm{f}(\mathrm{x})$	0	5224	8097	7850	5499	2626	0

5. Prove that both the real and the imaginary parts of an analytic function $f(z)=u+i v$ satisfy Laplace's equation.
6. Evaluate $\int_{C} \frac{e^{2 z}}{(z-1)(z-2)} d z$, where C is the circle $|z|=3$.
7. Find the residues of $f(z)=\frac{z^{z}}{(z-a)^{3}}$ at pole.

Write an essay on ANY ONE of the following

1. Evaluate using Cauchy's integral formula for $\int_{C} \frac{z+1}{z^{3}-2 z^{2}} d z$, where C is the unit circle $|z|=1$.
2. Obtain the Fourier series of period 2L for the function $f(x)=|x|$ in $-L<x<L$. Hence find the value of $1^{-2}+3^{-2}+5^{-2}+\ldots$.
