KERALA AGRICULTURAL UNIVERSITY

B. Tech (Food.Engg.) 2012 \& Previous Admissions III ${ }^{\text {rd }}$ Semester Final Examination-February-2017

Cat. No: Base. 2108.
Marks:80.00
Title: Engineering Mathematics- III (2+1)
Time: 3 hours

Part I Answer all the questions

[$10 \times 1=10$]

1. A vector with zero divergence is called a ------ vector.
2. Define conjugate functions of an analytic function.
3. A point where the function ceases to be analytic is called a ------ point.
4. State true or false. Any solution of the Laplace's equation is called a harmonic function.
5. A function $f(t)=\int_{0}^{\infty} A(\omega) \cos \omega t d \omega$ is a ------ integral representation of $f(t)$.
6. What is a unit step function?
7. Write Cauchy-Riemann equations.
8. A transformation of the form $w=\frac{a z+b}{c z+d}$ is called a ------ transformation.
9. A series of the form $a_{0}+a_{1}(z-a)+a_{2}(z-a)^{2}+\ldots+a_{n}(z-a)^{n}+\ldots$ is called a $\ldots--$ series.
10. A pole of order one is also called a ------- pole.

Part II Answer any ten questions
$[10 \times 3=30]$

1. Given $r=\sin t i+\cos t j+t k$, find $\frac{d r}{d t}$ and $\frac{d^{2} r}{d t^{2}}$.
2. If $\phi(x, y, z)=x^{2}+y^{2}+z^{2}$, find $\frac{d \phi}{d s}$ in the direction of the vector $4 i+2 j-4 k$, at the point ($1,1,2$).
3. Prove that $\operatorname{div} r=3$ and curl $r=0$, where $r=x i+y j+z k$.
4. Find div curlf where $f=x^{2} z i-2 y^{3} z^{2} j-x y^{2} k$.
5. Show that $F\left\{u(t) e^{-a t}\right\}=\frac{1}{i \omega+a} \quad(a>0)$.
6. Find the Fourier transform of $u(t) t^{k} e^{-a t}$, where k is a positive integer and $a>0$.
7. Show that the transformation $u=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$ is harmonic.
8. Distinguish between isogonal transformation and conformal transformation.
9. Show that the transformation $w=\frac{2 z+3}{z-4}$ maps the circle $x^{2}+y^{2}-4 x=0$ onto the straight line $4 u+3=0$.
10. Use Cauchy's integral formula to evaluate $\oint_{C} \frac{e^{2 z}}{(z+1)^{2}} d z$, where C is the circle $|z|=2$.
11. Expand $\frac{1}{z^{2}-3 z+2}$ in the region $|z|<1$
12. Write short notes on singularities and zeros.
13. Evaluate $\oint_{C} \frac{e^{z}}{(z+1)^{2}} d z$ where C is the circle $|z-3|=3$

Part III Answer any six questions

1. Show that $f=\left(6 x y+z^{3}\right) i+\left(3 x^{2}-z\right) j+\left(3 x z^{2}-y\right) k$ is irrotational and hence find its scalar potential.
2. Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d y d x$
3. Find the Fourier series expansion of the periodic function $f(x)=x^{2},-\pi \leq x \leq \pi$ of period 2π.
4. Determine a, b, c, d so that the function $f(z)=\left(x^{2}+a x y+b y^{2}\right)+i\left(c x^{2}+d x y+y^{2}\right)$ is analytic.
5. Under the transformation $w=\frac{1}{z}$, find the image of $|z-2 i|=2$.
6. Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the paths
a) $y=x$
b) $y=x^{2}$
7. Determine the poles of the function $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ and the residue at each pole.
8. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$

Part IV Answer any one question

1. Verify Greens theorem in the plane for $\oint_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the boundary of the region defined by $y=\sqrt{x}$ and $y=x^{2}$.
2. Evaluate $\oint_{C} \frac{z-3}{z^{2}+2 z+5} d z$ where C is the circle
i. $|z|=1$
ii. $|z+1-i|=2$
iii. $|z+1+i|=2$
