KERALA AGRICULTURAL UNIVERSITY B.Tech (Food. Engg) 2014 Admission IIIrd Semester Final Examination-December -2015

Cat. No: Basc.2108 <u>Title: Engineering Mathematics III (2+1)</u>	Marks: 50.00 Time: 2 hours
I Fill up the blanks	(10 x 1=10)
1. Gradient vector field of $x^2 + y^2 + z - xy + 1$ at the point (1, -1,2)	
2. $\nabla x R =$	
3. The Cauchy Reimann equations are	
4. The general value of log (-i)	
5. Write down convolution theorem.	
Cauchy residue theorem is given by	
7. A bilinear transformation transforms circle in toa	nd it preserves
of four points	
8. What is an analytic function	
9. The poles of $\frac{1}{1-e^z}$ are	
$10.\nabla R = $	
II Write the answer of any FIVE questions	(5 x 2=10)
 What is harmonic function? Find out the harmonic conjugate of a f real part is x³ -3xy² 	unction whose
2. A particle move along the curve $x = t^3 + 1$, $y = t^2$, $z = 2t + 3$ where	e t is the time .
find the velocity at $t = 1$	
3. Find out the singular point of $\frac{z^2}{(z-1)(z-2)^2}$	
4. Obtain the half range sine series of $f(x) = e^x$ in $0 < x < 1$	
5. State Gauss Divergence Theorem	
6. Expand tan z using maclaurin's series expansion	
7. Find the Fourier series representationary f (x) = $\begin{cases} x \text{ in } (0, \pi) \\ 2\pi - x \text{ in } (\pi, 2\pi) \end{cases}$)

III Write answer of any FIVE questions

- 1. Find the Fourier series of expansion of $f(x) = x, -1 \le x \le 1$
- 2. Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the region 1 < |z| < 2
- 3. Find the div \overline{F} and curl \overline{F} where $\overline{F} = \text{grad} (x^3 + y^3 + z^3 3xy)$
- 4. If f(z) = u + iv is an analytic function with constant modulus ,then prove that f(z) is constant
- 5. Find the Taylor series expansion of cos z about $z = \frac{\pi}{2}$
- 6. Evaluate $\int_C \frac{e^z}{(z-1)(z-2)} dz$, where c is the circle |z| = 3
- 7. Find Fourier Sine Series and Cosine series for the function given by $f(x) =_x$; $0 \le x \le 1$

IV Write answer of any ONE

 $(1 \times 10 = 10)$

- 1. a) Define Bilinear transformation
 - b) Find bilinear transformation which maps the points z = 1, *i*, -1 in to the point
 - w=i, 0,-i Hence, find the image of |z| < 1
- 2. a) State Cauchy's residue theorem
 - b) By integrating around the a unit circle, evaluate $\int_{0}^{2\pi} \frac{\cos\theta}{5-4\cos\theta} d\theta$

 $(5 \times 4=20)$