KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg) 2013 Admission

 III ${ }^{\text {rd }}$ Semester Final Examination- December -2014
Cat. No: Basc. 2108

Title: Engineering Mathematics -III
Marks: 50.00
Time: 2 hours

Part-I (answer all questions)

1. If $\overline{\mathrm{r}}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk}$, prove that $\nabla(\overline{\mathrm{a}} . \overline{\mathrm{r}})=\overline{\mathrm{a}}$, where $\overline{\mathrm{a}}$ is a constant vector.
2. Find the divergence and curl of the vector $\overline{\mathrm{F}}=x y z i+3 x^{2} y j+\left(x z^{2}-y^{2} z\right) k$ at the point $(2,-1,1)$.
3. Obtain the Fourier series of $f(x)=x$ in the interval $(0,2 \pi)$
4. Determine whether or not the function $x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$ harmonic.
5. Evaluate $\int_{\mathrm{c}} \frac{\mathrm{dz}}{\mathrm{z}-\mathrm{a}}$ when (i) a is inside c (ii) a is outside c .

Part II (answer any five)
6. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $x^{2}+y^{2}-z=3$ at the point $(2,-1,2)$.
7. Determine the analytic function whose real part is $x^{2}-y^{2}-2 x y-2 x+3 y$.
8. Expand cosz in a Taylor series about $z=\pi / 4$.
9. Find the half range sine series of $f(x)=(x-1)^{2}$ in the interval $(0,1)$.
10. Evaluate $\int_{0} \frac{e^{2} d z}{(z+1)^{2}}$ where c is $|z-3|=3$.
11. Find the bilinear transformation which maps the points $z=1, i,-1$ into $w=i, 0,-i$.
12. Find the Fourier integral of $f(x)=\left\{\begin{array}{c}1 \text { for }|x| \leq 1 \\ 0 \text { for }|x|>1\end{array}\right.$.

Part III (answer any one)
13. Iff $(\mathrm{x})=\left\{\begin{array}{c}0 \text { in }(-\pi, 0) \\ \sin \mathrm{x} \text { in }(0, \pi)\end{array}\right.$, prove that $\mathrm{f}(\mathrm{x})=\frac{1}{\pi}+\frac{\sin \mathrm{x}}{2}-\frac{2}{\pi} \sum \frac{\cos 2 \mathrm{nx}}{4 \mathrm{n}^{2}-1}$.
₹ 14. Use Green's theorem in a plane to evaluate the integral $f\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where c is the boundary in the $x y$ plane of the area enclosed by the X-axis and the semicircle $x^{2}+y^{2}=1$ in the upper half of $x y$ - plane.

