KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food. Engg) 2011 Admission

III rd Semester Final Examination- January/February -2013

Cat. No: Basc.2108	Marks: 80
Title: Engineering Mathematics III (2+1)	Time: 3 hours

Part A (answer all questions)

- 1. Find the directional derivative of the function $f = x^2 y^2 + 2z^2$ at the point P(1,2,3) in the direction of the line PQ where Q is the point (5,0,4).
- 2. If $\bar{r} = xi + yj + zk$, show that div $\bar{r} = 3$ and curl $\bar{r} = 0$.
- 3. Obtain the Fourier series of $f(x) = x^2$ in $(-\pi, \pi)$.
- 4. Explain the transformation w = z + c, where c is a complex constant.
- 5. Calculate the residue of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ at its simple pole.

Part B (answer any five)

- 6. Evaluate $\int_{0}^{1+1} (x^2 iy) dz$ along the path $y = x^2$.
- 7. Determine the analytic function whose real part is $u = 3x^2y y^3$.
- 8. Expand $\frac{1}{(z-1)(z-2)}$ as a series in the region $|z| \langle 1$.
- 9. Find the half-range cosine series of $f(x) = (x-1)^2$ in the interval (0,1).
- 10. Using residue theorem, evaluate $\int_{c} \frac{2z-1}{z(z+1)(z-3)} dz$ where c is |z| = 2.
- 11. Find the image of the line y x + 1 = 0 under the mapping $w = \frac{1}{2}$.
- 12. Find the Fourier sine transform of $e^{-|x|}$

Part C (answer any two)

13. Find the Fourier series representation

of $f(x) = \begin{cases} x \text{ in } (0,\pi) \\ 2\pi - x \text{ in } (\pi, 2\pi) \end{cases}$

.Deduce

(5 x 6=30)

 $(5 \ge 4=20)$

that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

14. a) prove that $\operatorname{div}(\phi \overline{f}) = \phi \operatorname{div} \overline{f} + (\operatorname{grad} \phi) \cdot \overline{f}$, where ϕ is a scalar point function and \overline{f} is a vector point function

b) Prove that $\operatorname{curl}(\operatorname{grad}\phi) = 0$

15. Verify Green's theorem in the plane for $\int (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where c is the boundary of the region bounded by x = 0, y = 0, x + y = 1(2 x 10=20)

Part D (answer either a or b)

16. a)Evaluate
$$\int_{c} \frac{12z - 7 dz}{(z - 1)^{2}(2z + 3)} \text{ where } c \text{ is } |z| = 2$$

b) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos\theta}.$$

(10 x 1=10)