KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food. Engg) 2011 Admission

III ${ }^{\text {rd }}$ Semester Final Examination- January/February -2013

Cat. No: Basc. 2108
Title: Engineering Mathematics III (2+1)

Marks: 80
Time: 3 hours

Part A (answer all questions)

1. Find the directional derivative of the function $f=x^{2}-y^{2}+2 z^{2}$ at the point $P(1,2,3)$ in the direction of the line PQ where Q is the point $(5,0,4)$.
2. If $\overline{\mathrm{r}}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk}$, show that $\operatorname{div} \overline{\mathrm{r}}=3$ and curl $\overline{\mathrm{r}}=0$.
3. Obtain the Fourier series of $f(x)=x^{2}$ in $(-\pi, \pi)$.
4. Explain the transformation $\mathrm{w}=\mathrm{z}+\mathrm{c}$, where c is a complex constant.
5. Calculate the residue of $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ at its simple pole.

Part B (answer any five)
6. Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path $y=x^{2}$.
7. Determine the analytic function whose real part is $u=3 x^{2} y-y^{3}$.
8. Expand $\frac{1}{(z-1)(z-2)}$ as a series in the region $|z|<1$.
9. Find the half-range cosine series of $f(x)=(x-1)^{2}$ in the interval $(0,1)$.
10. Using residue theorem, evaluate $\int_{c} \frac{2 z-1 d z}{z(z+1)(z-3)}$ where c is $|z|=2$.
11. Find the image of the line $y-x+1=0$ under the mapping $w=\frac{1}{z}$.
12. Find the Fourier sine transform of $\mathrm{e}^{-|x|}$.
($5 \times 6=30$)
Part C (answer any two)
13. Find the Fourier series representation of $f(x)=\left\{\begin{array}{c}x \text { in }(0, \pi) \\ 2 \pi-x \text { in }(\pi, 2 \pi)\end{array}\right.$.Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \ldots=\frac{\pi^{2}}{8}$.
14. a) prove that $\operatorname{div}(\phi \overline{\mathrm{f}})=\phi \operatorname{div} \overline{\mathrm{f}}+(\operatorname{grad} \phi) \cdot \overline{\mathrm{f}}$, where ϕ is a scalar point function and $\overline{\mathrm{f}}$ is a vector point function
b) Prove that $\operatorname{curl}(\operatorname{grad} \phi)=0$
15. Verify Green's theorem in the plane for $\oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where c is the boundary of the region bounded by $x=0, y=0, x+y=1$

Part D (answer either a or b)
16. a)Evaluate $\int_{c} \frac{12 z-7 d z}{(z-1)^{2}(2 z+3)}$ where c is $|\mathrm{z}|=2$
b) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$.

