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CHAPTER I

 INTRODUCTION

The finite  element  method (FEM) is  a numerical  analysis  technique  for  obtaining

approximate  solutions  to  a  wide  variety  of  engineering  problems.  Although  originally

developed to study stresses in complex airframe structures, it has since been extended and

applied to the broad field of continuum mechanics. Because of its diversity and flexibility as

an analysis tool, it is receiving much attention in engineering schools and in industry. 

Agricultural engineering is the combination of almost all basic engineering disciplines

with its orientation in technology implementation in agriculture. Being a comparatively new

branch of technology, agricultural engineering requires the application of modern science and

technology  for  the  growth  and  development  of  agriculture.  The  scope  of  agricultural

engineering is both wide and varied, covering such diversified field as farm machinery and

power, agricultural processing, soil and water conservation along with farm irrigation, ground

water, farm buildings and structures, and environmental engineering. The application of finite

element  analysis  is  comparatively  new  in  the  area  of  agricultural  engineering,  so  the

utilisation of Finite Element is very much demanding in the current scenario for solving the

complex problems related to Agricultural engineering. 

FEM is a well-established numerical technique, which has been used to obtain the

numerical solution of various real life problems in the areas of engineering and science. The

method has been developed over about thirty years, from the traditional matrix methods for

structural analysis for frames and trusses. In many cases, finite-element models show a more

realistic spatial discretization than finite-difference models. 

FEM  software  provides  a  wide  range  of  simulation  options  for  controlling  the

complexity  of  both  modelling  and  analysis  of  a  system.  This  powerful  design  tool  has

significantly improved both the standard of engineering designs and the methodology of the

design process in many industrial  applications. The introduction of FEM has substantially

decreased the time taken by products from concept to the production line. Initial prototype

designs using FEM has accelerated and improved testing and development.  FEM improves

accuracy,  enhance  the  design  and  give  better  insight  into  the  critical  design  parameters,

10



leading to a virtual prototyping and fewer hardware prototypes. The result is a faster and less

expensive design cycle, increased productivity and increased revenue.

Movement  of  groundwater  in  the  subsurface  is  responsible  for  a  variety  of

environmental  and geological  processes  including  heat  transfer  and solute  transport.  The

groundwater is extracted from aquifers through pumping wells and supplied to domestic use,

industry and agriculture. With increased withdrawal of ground water, the quality of ground

water has been continuously deteriorating. Also water can be injected into aquifers for storage

and/or quality control purposes. Increased demand for water has stimulated development of

techniques for investigating the occurrence and movement of groundwater. So there is a need

to evaluate them and mathematical modelling provides an essential quantitative tool. One of

the  important  developments  in  groundwater  hydrology  in  recent  years  has  been  the

introduction of numerical groundwater models. These have made an improved understanding

of complex groundwater systems possible. In recent years, the demand for using computer

simulations  increased  to  make  predictions  of  flow and  transport  in  the  subsurface,  thus

familiarity with the fundamental principles behind modelling is critical.

It is evident from a study of the journals, proceedings and research reports that the use

of  groundwater  modelling  has  increased  over  the  past  15  years.  Numerical  modelling  is

becoming an increasingly important  tool for analysing complex problems involving water

flow and contaminant transport in the unsaturated zone. 

An understanding of ground water flow modelling helps to

 Determine the total volume that can be withdrawn annually from the aquifer.

 Make Decisions related to groundwater quality. 

 Study the effect  of Agricultural  activities  such as the use of fertilizers  and

pesticides.

 Identify the best potential locations for future well installations and show how

the pumping of one or more wells will affect the other wells in the aquifer and

surface water bodies.

. Heat transfer analysis is a problem of major significance in a vast range of industrial

applications.  These  extend  over  the  fields  of  mechanical  engineering,  aeronautical

engineering,  agricultural  engineering,  chemical  engineering  and numerous  applications  in
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civil and electrical engineering. Thermal simulation play an important role in the design of

many  engineering  applications  including  thermal  combustion  engines  turbines,  heat

exchangers,  piping  systems,  electronic  components  etc.  Advanced  topics  which  include

features such as phase change, coupled heat and mass transfer, and thermal stress analysis

provides  the  engineer  with  the  capability  to  address  a  further  series  of  key  engineering

problems. The complexity of practical problems is such that closed form solutions are not

generally  possible.  The use  of  numerical  techniques  to  solve  such problems is  therefore

considered essential. The capabilities of FEM can be easily expanded to several applications

within the food industry. The application of heat and mass transfer to drying problems and the

calculation  of  both  thermal  and  shrinkage  stresses  can  be  modeled  using  finite  element

method. Finite element models are often used to study the heat transfer characteristics of a

device, to understand where and how heat is rejected as well as the transient and steady-state

temperature distributions.

The FEM can be used in food industry to: 

  Study cold and hot spots within various foods of irregular geometries

  Predict the microbial destruction and nutrient degradation

  Optimize the process

  Develop information  and nomograms to educate  the consumer on heating

techniques for food safety and quality

FEA  is  a  widely  accepted  computer  simulation  methodology  for  modelling,

evaluating,  and  optimizing  farm  machinery  equipment  /tool’s  mechanical  and  structural

design. The technology has a long history of effective use in the energy industry as well as in

the agricultural engineering and automotive sectors. Engineers generally start with a CAD

model  and then use FEA software to transform that model into a 3D mesh of geometric units

– the ‘elements’ in finite element analysis. FEA is capable of reducing design time as well as

the expense of extensive physical prototyping. The technology has been accelerated in recent

years  with  the  addition  to  the  engineer’s  toolbox  of  process  integration  and  design

optimization software, as well as multi-core, high-performance computing. Extensive FEA

materials libraries help the design engineer to model and predict the response of different

materials under such huge temperature and/or pressure differentials. Subsoilers work in the

very arduous conditions, so they bear heavy dynamic loads. 
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Design optimization software, used in combination with FEA, enables engineers to

automate the exploration of multiple design alternatives and arrive at  design performance

answers faster and with higher degree of confidence than is possible with manual analysis

techniques  alone.  This  leads  to improve the strength  of  our  design.  ANSYS is  a  general

purpose  software  package  based  on  the  finite  element  analysis.  This  allows  full  three-

dimensional simulation without compromising the geometrical details. 
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OBJECTIVE OF PRESENT STUDY

 Study of finite element method

 Mathematical  formulation  of  two-dimensional  problems governed by Poisson’s

equation

 Numerical  implementation  of  two-dimensional  problems related  to  agricultural

engineering

 Analysis  of  some  agricultural  engineering  related  problems  using  the  finite

element software package ANSYS
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CHAPTER II

REVIEW OF LITERATURE

The finite-element  method originated from the need for solving complex  elasticity

and  structural analysis problems in civil and aeronautical engineering. Its development can

be traced back to the works by  Alexander Hrennikoff (1941) and  Richard Courant (1942).

The  approaches  used  by  them  were  different,  but  share  one  essential  characteristic,

discretization  of  a  continuous  domain  into  a  set  of  discrete  sub-domains,  usually  called

elements. Hrennikoff's work discretizes the domain by using a lattice analogy while Courant's

approach divides the domain into finite triangular sub-regions for solution of second order

elliptic partial differential equations that arise from the problem of torsion of a cylinder.

Development of the finite element method began in the middle of 1950s for airframe

and structural analysis and progressed through the work of John Argyris and  Ray W. Clough

in the 1960s for use in civil engineering. By late 1950s, the key concepts of stiffness matrix

and element assembly existed essentially in the form used today and NASA issued a request

for proposals to develop the finite element  software NASTRAN in 1965. The method was

provided with a rigorous mathematical foundation in 1973 with the publication of Strang and

Fix's  An Analysis  of  The Finite  Element Method, and has  since been generalized  into  a

branch of applied mathematics for numerical modelling of physical systems in a wide variety

of  engineering disciplines.  Regarding  the  application  of  FEM  in  hydrology,  though  the

formulation of the problem can be found as early as 1966 by Zienkiewicz, the method has a

slow progress for ground water flow problems.

GROUND WATER

Mosé et al., (1994) studied the groundwater flow problem with a two-way comparison

between the mixed hybrid finite element method and the standard finite element method (also

called  the  conforming  finite  element  method).  The  simulations  were  presented  for  two-

dimensional case with a triangular space discretization because of its practical interest for

hydro-geologists. The results of the simulations were presented in the form of streamlines.

The  comparison  studies  showed  that  the  mixed  hybrid  finite  element  is  superior  to  the

conforming  method  in  terms  of  accuracy  and  computational  effort.  The  potential  fields

obtained by the mixed hybrid and the conforming finite element methods were the same.
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Rabbani  (1994)  reported  that  real-world  groundwater  modelling  dealt  with

heterogeneous and anisotropic aquifer systems. He developed a new approach to overcome

the  limitations  of  the  conventional  finite  element  method.  In  that  approach,  a  two-

dimensional model was discretized into triangular elements. Element matrices were formed

directly based on flow principles and material properties of elements, without using shape

functions and integration process. 

Yu  et al., (1994) modeled three dimensional groundwater flow by Modified Finite-

Element  Method. In this,  a number of theoretical  improvements  were made to the finite-

element formulation for modelling three-dimensional steady and unsteady ground-water flow.

The  Galerkin  method  was  combined  with  the  collocation  method  to  handle  the  time-

derivative term of the governing equation and the resulting system of ordinary differential

equations was solved by using finite integration. 

Larabi  et  al., (1997)  developed a numerical  procedure  for  solving 3-D phreatic

groundwater flow with saltwater intrusion. The model used a fixed finite-element (FE) mesh,

and iteratively adjusted the water table  and the saltwater-interface positions  by excluding

flow in the unsaturated zone and the saltwater zone. Validation of the numerical model was

further made with respect to observations from a 3-D laboratory sand box involving phreatic

flow coupled with a saltwater interface. They obtained model simulations and experimental

results  in  good agreement  and claims  that  this  model  can  also  be  used  for  groundwater

management.

Janssen  (2004)  presented  a  study  of  analytical  and  numerical  models  for

groundwater flow calculations. The numerical models were found to be more effective for

incorporating various subsoil and boundary conditions in detail.

Dawson et al., (2006) studied locally conservative, stabilized finite element methods

for variably saturated flow. Standard Galerkin finite element methods for variably saturated

groundwater flow were found to have several deficiencies. They considered conforming finite

element  discretizations  based on a  multiscale  formulation  along with recently  developed,

local  post  processing  schemes.  Accuracy  and  efficiency  of  the  proposed  schemes  were

evaluated through a series of steady-state and transient variably saturated groundwater flow

problems in homogeneous as well as heterogeneous domains.
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Bibin Sunny et al., (2009) studied the finite element method as a part of their B.Tech

degree program. They developed a program in visual C++ to model the groundwater flow.

And also they analyzed different 1-D and 2-D numerical groundwater flow problems. 

HEAT TRANSFER
Jiri Kratochvil  et al.,  (1989) studied the embankment failure due to the destabilizing

effect of seepage forces of the infiltrating water during floods. The analogy between seepage

and heat diffusion is used to analyze the hydraulic problem with ANSYS/THERMAL. The

results of the numerical solution using ANSYS/THERMAL was compared with experiments

carried  out  in  the  hydraulic  flume.  The  numerical  results  obtained  proved  that  the

ANSYS/THERMAL is  a  powerful  instrument  for  the  detailed  analysis  of  the  transient

hydrodynamic fields in embankment dams during flood periods. 

Lin et al., (1995) used the finite element method to predict temperature distribution in

agar  gels  by  using  the  commercial  software  TWODEPEP.  It  has  been  used  to  model

microwave processing of foods.

Ozkan Sarikaya et al., (2005) investigated the heat transfer characteristics for different

ceramic  coatings  in thermal  barrier  applications  using finite  element  method (FEM). The

effect of the different types of coatings on thermal insulation properties and residual stresses

was discussed based on the results by FEM. It was evaluated that the best thermal barrier

coating systems, which have the lowest residual stresses and high temperature difference,

were determined on the interlayer and bond coat of the MgO–ZrO2 coating system with five

layers, and also finite element technique used to optimize the heat transfer characteristics of

the thermal barrier ceramic coatings

Vittorio Raffaele et al., (2005) analysed microwave heating of foodstuff, characterised

by cylindrical geometry, using a finite element model. The model has been set and solved by

a commercial package, FEMLAB. 

Stefano et al., (2008) studied the behaviour of a cylindrical-shaped vegetable sample

in a drier, by using finite elements method. An experimental study was undertaken which

showed  very  good  agreement  between  model  predictions  and  experimental  results.  The

proposed  model  was  found  useful  for  the  situations  in  which,  either  semi-empirical

correlation were not currently available or operating conditions were changed during drying

process. The model could determine which set of operating conditions would enhance the

quality and the safety of the final product. 
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Hikmet Esen et al., (2009) studied temperature distributions in boreholes of a vertical

ground-coupled heat pump system (GCHP). A two-dimensional finite element model (FEM)

was developed to simulate temperature distribution development in the soil surrounding the

Ground Heat Exchanger (GHE) of GCHP operating in the cooling and the heating modes.

The  model  was  shown  to  be  very  compatible  for  showing  the  temperature  distribution

development in the boreholes with time. Presently, FEM appears to be most promising for

predicting the response of GHEs to thermal loading.

FARM MACHINERY

 Kushwaha  et  al., (1990)  applied finite  element  analysis  to  study  the  effect  of  friction

coefficient on the tool draft. Laboratory tests were conducted to investigate the soil forces on

a metallic-glass-coated cultivator sweep, and these forces were compared with the forces on a

regular sweep. The results from the theoretical analysis and the experimental tests showed a

significant decrease in draft with the reduction in friction coefficient between the soil and the

tool surface.

          Gupta and Maheshwari (1992) analyzed the stress over a cultivator shovel moving at a

certain depth. The assumptions made it possible to apply the theory of bending of laterally

loaded plates for the computation of stresses set up in the tillage tool. This theory involves

fundamental  equations  of  elasticity,  namely  the  equations  of  equilibrium,  equations  of

continuity and surface conditions. The theoretically calculated values of stresses were fairly

close to experimentally observed values.

Brown et al., (1998) outlined a stress analysis performed on a Chisel Plow using finite 

element analysis. A proposed redesign of the hitch permitted full 360-deg front wheel caster 

and resulted in lower stress levels within the members of the hitch.

Nidal and Randall (2003) done Nonlinear 3D Finite Element Analysis of the Soil Forces 

Acting on a Disk Plow. The study aimed to compare predicted soil forces on a disk plow with

measured forces within the tillage depth of clay and sandy loam  soils. The model assumed 

the effects of both tilt angle and plowing speed. A 3D nonlinear finite element model was 

used to predict the soil forces while a dynamometer was used to measure them on a disk plow

in the field.

           Gebregziabher  et al., (2007) validated design of the Ethiopian plough

using structural analysis with finite element analysis.  The force analysis
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was  validated  by  means  of  the  finite  element  (FE)  analysis  using  the

ABAQUS package. They confirmed that draught force on the ploughshare

increased  with  pulling  angle. The  output  of  the  FEM  and  traditional

calculation resulted in small errors of less than 3% for draught and 5% for

vertical forces.

Kaveh Mollazade  et al., (2010) modelled  subsoilers with various shapes like C

shape,  sloping  shape,  and  L shape  in  order  to  choose  best  one  of  them with  maximum

working life. Clay loam soil condition was used as a tool to find the value of soil resistance

forces  and  models  were  analyzed  with  ANSYS  software.  Results  showed  that  shape  of

subsoiler has no significant roll in the maximum number of allowable force exertion cycles

which caused to fracture of subsoiler’s shank. It also showed that C shape has better design

than  the  others  and  this  makes  the  higher  factor  of  safety  for  C  shape  subsoiler  and

consequently have more working life.
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CHAPTER III

MATERIALS AND METHODS

The governing equation for two-dimensional groundwater flow in homogenous soil

and heat transfer in an isotropic region is in the form of Poisson’s equation. In finite element

method,  the  given  domain  is  divided  into  sub-domains,  called  finite  elements,  and  an

approximate solution to the problem is developed over the domain. The methods used and

methodology adopted for Finite Element Analysis of two-dimensional problems is described

in this chapter.

3.1 MATHEMATICAL FORMULATION

3.1.1 Finite Element Method

The finite element method is a numerical technique that employs the philosophy of

constructing  piecewise  approximations  of  solutions  to  problems  described  by differential

equations. The finite element method is a powerful technique devised to numerically evaluate

the complex field problems.  The most distinctive feature of the finite element method, that

separates it from other methods, is the division of a given domain into a set of simple sub

domains, called finite elements. The finite element method overcomes the disadvantages of

the traditional variational methods by providing a systematic procedure for the derivation of

the approximation functions over sub regions of the domain.

Thus,  the finite  element  method can be viewed,  in  particular,  as  an element  wise

application  of  the weighted residual  method.  In it,  the approximation  functions  are  often

taken to be algebraic polynomial, and undetermined parameters represent the values of the

solution at a finite number of pre-selected points, called nodes, on the boundary and in the

interior of the element.

Since  the  finite  element  method  is  a  technique  for  constructing  approximation

functions required in an element based application of any variational method, it is necessary

to  study the weighted-integral  formulation  and to  arrive  at  the  weak form of  differential

equations. The primary objectives will be to construct the weak form of a given differential

equation and to classify the boundary conditions associated with the equation. A weak form is
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weighted  –integral  statement  of  a  differential  equation  in  which  the  differentiation  is

distributed among the dependent variable and the weight function and includes the natural

boundary conditions of the problem.

There are three steps in development of the weak form of any differential equations.

In the first, we put all expressions of the differential equation on one side (so that the other

side is equal to zero), then multiply the entire equation by a weight function and integrate

over the domain of the problem. The resulting expression is called the weighted-integral form

of the equation. In the second step, we use integration by parts to distribute differentiation

evenly among the dependent variable and the weight function, and use the boundary terms to

identify the form of primary and secondary variables. This is the weak form or variational

form of the governing equation from which we form the finite element equations. In the third

step,  we  modify  the  boundary  terms  by  restricting  the  weight  function  to  satisfy  the

homogeneous  form  of  the  specified  essential  boundary  conditions  and  replacing  the

secondary variables by their specified values.

3.1.2 Steps involved in the finite element method

i.  Discretization of the given domain in to a collection of pre-selected finite elements.

The size of the elements can be uniform or non-uniform. Each element is assumed to be

connected to the neighbouring elements at nodes. The collection of elements is called finite

element mesh. Generate the geometric properties (coordinates, cross-sectional area etc.) of

the element needed for the problem.

ii. Derivation of elements equation for typical elements in the mesh.

Construct a variational form of the differential equations over the domain of the problem.

Assume that the variable of the problem is of the form 1 1 2 2u u N u N  where 1u and 2u are the

nodal values of the problem and 1N and 2N  are the assumed shape functions or interpolation

functions. Select element interpolation functions or shape function and formulate the element

equation of the problem in the form    e e eK u F� � � �  where eK is the matrix containing the

influence coefficients, eu  the nodal displacements and eF the nodal force of the element.

iii. Assembly of element equations to obtain the equation of the whole problem.

iv. The element  equations are assembled after  identifying the inter-element  continuity

conditions between the local and global degrees of freedom. The boundary conditions are

then imposed.
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v. Solution of the assembled equations.

The assembled equations are solved to get the nodal unknowns of the problem.

vi. Post processing of the result.

Compute the variables of the problem at  desired points other  than nodes from the nodal

values. Represent the results in a tabular or graphical form.

3.1.3 Formulation of two-dimensional ground water flow and heat transfer under steady

state condition 

The governing equation for two-dimensional ground water flow in homogeneous soil and

heat transfer in an isotropic rectangular region is in the form of the Poisson equation given by

2 0k f  �  (1)

where

k = coefficient of permeability / thermal conductivity

f = recharge / internal heat generation 

u = piezometric head / temperature and

 = gradient operator

The gradient operator can be expressed as

i j
x y

� � �
� �

Where i and j denotes the unit vectors directed along the x and y axes respectively. Then, the

Eq. (1) can be written as

2 2

2 2
0

u u
k f

x y

� �� �  � �� �� � (2)

For  the  development  of  weak  form,  consider  an  arbitary  element  Ωe,  whether

triangular or quadrilateral, of the finite element mesh. Development of weak form over  Ωe

include three steps. The first step is to multiply Eq. (2) with a weight function ‘ѡ’, which is

assumed to be differentiable once with respect to  x  and  y,  and then integrate the resulting

equation over the element domain Ωe.

2 2

2 2
0

e

u u
k w f dxdy

x y

� �� �� �  � �� �� �� �� �
�            (3)
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In  the  second step,  the  differentiation  is  equally  distributed  between  u  and w. To

achieve this integrate the first two terms in Eq. (3) by parts

2

2

u w u u
w w

x x x x x

� � � � �� � � �� � � � �� �           (4)

2

2

u u w u
w w

x x x x x

� � � � �� � � �� � � � �� �           (5)

2

2

u w u u
w w

y y y y y

� �� � � � � � �� � � � �� �           (6)

 
2

2

u u w u
w w

y y y y y

� �� � � � � � �� � � � �� �
           (7)

Using divergence theorem 

e e

x

u u
w dxdy w n ds

x x x 

� � �� � � �� � �� �� �  (8)

e e

y

u u
w dxdy w n ds

y y y 

� �� � �� �� � �� �
� � (9)

where xn and  are component of unit normal vector along x and y coordinates.

Applying equations (5), (7), (8) and (9) in equation (3) we get the weak form as

0
e e

x y

w u w u u u
wf dxdy w n n ds

x x y y x y 

� � � �� � � � � �     � � � �� � � � � �� � � �
� � (10)

Specifying the coefficient of the weight function in the boundary expression

n x y

u u
q n n

x y

� � 
� �

(11)

constitutes  the natural  boundary condition  and  nq is  the secondary variable  of the

formulation.

The third and last step of the formulation is to use Eq. (11) in Eq. (10) to get the weak

form of Eq. (3) as  

0
e e

n

w u w u
wf dxdy q wds

x x y y 

� �� � � �    � �� � � �� �
� �            (12)

Suppose that u is approximated over the finite element by the expression

   
1

, ,
n

e e
j j

j

u x y u N x y


 � (13)
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Where 
e
ju  is the value of u  at thj  node. Substituting equation (13) into (12)

1 1

0
n n

j j
n

j j

N Nw w
k wf dxdy q wds

x x y y  

� �� �� �    � �� � � �� �
� �� � (14)

Since we need n independent algebraic equations to solve for the n  unknowns 
1u ,,

3u  ...
nu ,

we choose n independent functions for w: w = N1, N2, ……. Nn

The ith algebraic equation is obtained by substituting w = Ni into equation (12)

1

n
j ji i

i n i
j

N NN N
dxdy f N dxdy q N ds

x x y y   

� �� �� �� �  � �� �� � � �� �� �
�� � �

(15)

or 1

n
e e e e
ij j i i

j

K u f Q


 �
(16)

In matrix notation this takes the form

     e e e eK u f Q� �  � � (17)

If we know the head at each node 1u ,, 3u  ...  nu , we can determine the head or temperature

within the element.

The element displacement vector  eu  for the triangular element is given 

 
1

2

3

e

u

u u

u

� �
� � � �
� �
�

                     (18)

The element nodal displacement u(x) at any interior point of the element by the following

linear polynomial in x

u(x)=a + bx + cy         (19)

In matrix form, the conditions are written as

   
1

2

3

1

u

u x x y u

u

� �
� � � �
� �
�        (20)

Or       u x a                   (21)

The unknown coefficients a, b, c are determined based on the following conditions at the

nodes. 

At node 1, 1, 1 1  x x y y and u u  
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At node 2, 2 2 2,  and x x y y u u  

At node 3, x = , y = 3y and u = 3u

 1 1 1 1 1,u u x y a bx cy   
                           (22)

 2 2 2 2 2,u u x y a bx cy   
              (23)

 3 3 3 3 3,u u x y a bx cy   
             (24)

1 1 1

2 2 2

3 33

1

1

1

u x y a

u x y b

x y cu

� � � ���
� � ��� �� � ��� �
� � ��� �����              (25)

Or       eu A a
            (26)

Hence we get the coefficient vector  a

     1 ea A u


             (27)

On the other hand the interpolation process can be represented by

     eu N u
           (28)

From equations (23) and (25)  we have

           1 eu x a x A u
 

          (29)

Comparing equation (27) with equation (26), we see that

      1
N x A


         (30)

Where  the  elements  of  the  matrix   N are  denoted  by  1N , 2N , 3N  These  are  linear

interpolation polynomials in x and y, and are obtained as

 
1

,  1,  2,  3i
i i i

N i
a b x c y

 
   .                                         (31)

Where   in which i , j and k are to be taken in cyclic order. ∆ is given by

1 1

2 2

3 3

1

1  2x area of triangle

1

x y

x y

x y

  

1 2 3 3 2a x y x y      2 3 1 1 3a x y x y     3 1 2 2 1a x y x y 
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1 2 3b y y  2 3 1b y y  3 1 2b y y 

1 3 2c x x  2 1 3c x x  3 2 1c x x 

      1 2 3 3 2 2 3 3 2

1
N x y x y y y x x x y     



      2 3 1 1 3 3 1 1 3

1
N x y x y y y x x x y     



      3 1 2 2 1 1 2 2 1

1
N x y x y y y x x x y     



 1
2 3

1N
y y

x

�  
�

 2
3 1

1N
y y

x

�  
�

 3
1 2

1N
y y

x

�  
�

 1
3 2

1N
x x

y

�  
�

 2
1 3

1N
x x

y

�  
�

 3
2 1

1N
x x

y

�  
�

The interpolation matrix [N] is given by

   1 1 2 3N N N N

1 1 1 1
11

N N N N
k kA

x x y y

� �� � � � � �� � � �� �

1 2 1 2
12

N N N N
k kA

x x y y

� �� � � � � �� � � �� �

 

3 31 1
13

N NN N
k kA

x x y y

� �� �� � � �� � � �� �

 

2 1 2 1
21

N N N N
k kA

x x y y

� �� � � � � �� � � �� �
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2 2 2 2
22

N N N N
k kA

x x y y

� �� � � � � �� � � �� �

 

3 32 2
23

N NN N
k kA

x x y y

� �� �� � � �� � � �� �

 

3 31 1
31

N NN N
k kA

x x y y

� �� �� � � �� � � �� �

 

3 32 2
32

N NN N
k kA

x x y y

� �� �� � � �� � � �� �

 

3 3 3 3
33

N N N N
k kA

x x y y

� �� � � � � �� � � �� �

ek =
11 12 13

21 22 23

31 32 33

K K K

K K K

K K K

� �
� �
� �
� �� �

           ek U Q

11 12 13 1

21 22 23 2

31 32 33 3

K K K U

K K K U Q

K K K U

� �� �
� �� � � �� �
� �� ����

The element  coefficient  matrix  and element  load vectors  for various  elements  are

added together considering the local and global degrees of freedom to arrive at a system of

linear algebraic equations as given by      K U R

The boundary conditions are imposed and the algebraic equations are solved for the

unknown

3.1.4 NUMERICAL IMPLEMENTATION

To investigate the effectiveness of the present formulation we have studied several

two-dimensional  problems related to agricultural  engineering in the fields of groundwater

flow and heat transfer. An object oriented computer program in visual C++ was developed for

the  analysis  of  problems  governed  by  Poisson’s  equation  by  using  the  finite  element

modelling. A system of linear algebraic equations was obtained for the primary unknowns,

temperature  in  heat  transfer  problem and piezometric  head  in  groundwater  problems,  by
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applying the known boundary conditions. Two numerical examples were solved using the

program developed. 

3.1.5 Numerical problems:  

a) Two dimensional heat transfer.

A steady-state heat conduction in an isotropic rectangular region is considered as the

first problem and is of dimensions 15�10 (see Fig. ). The origin of the x and y coordinates is

taken at the lower left corner such that x is parallel to the side 15 and y is parallel to the side

10. The boundaries x=0 and y=0 are insulated,  the boundary x=15 is  maintained at  zero

temperature,  and  the  boundary  y=10 is  maintained  at  a  temperature 0 cos
30

x
T T

� � � �
� �

.  The

region  is  discretised  using  triangular  elements  of  different  sizes.  The nodal  temperatures

obtained using various finite element meshes  3 2� ,  6 4�  and  12 8�  were compared with

analytical solution. The exact solution for the boundary condition (Reddy, 1993) is

  0

cosh
30

, cos
1 30cosh
3

y
x

T x y T






� �
� � � �� � � �

� �
 

Triangular element mesh  3 2� .

Fig. 1 Geometry with triangular element mesh (3x2)
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The given area was divided into 12 nodes with 12 triangular elements of equal edge length.

Program input:

Number of nodes = 12 

Number of elements =12

Node X Co-ordinate Y Co-ordinate Node X Co-ordinate Y Co-ordinate

1 0 0 7 10 5

2 5 0 8 15 5

3 10 0 9 0 10

4 15 0 10 5 10

5 0 5 11 10 10

6 5 5 12 15 10

1

6  

4         1        0

8         1        0

12       1        0

10       1        0.867

9         1        1

11       1        0.5

0  

Triangular element mesh  6 4� .
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Fig. 2  Geometry with triangular element mesh (6x4)

The given area was divided into 35 nodes with 48 triangular elements of equal edge length.

Program input 

Number of nodes = 35

Number of elements =48

Node X-co ordinate Y-co ordinate Node X-co ordinate Y-co ordinate

1 0 0 19 10 5

2 2.5 0 20 12.5 5

3 5 0 21 15 5

4 7.5 0 22 0 7.5

5 10 0 23 2.5 7.5

6 12.5 0 24 5 7.5

7 15 0 25 7.5 7.5

8 0 2.5 26 10 7.5

9 2.5 2.5 27 12.5 7.5

10 5 2.5 28 15 7.5
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11 7.5 2.5 29 0 10

12 10 2.5 30 2.5 10

13 12.5 2.5 31 5 10

14 15 2.5 32 7.5 10

15 0 5 33 10 10

16 2.5 5 34 12.5 10

17 5 5 35 15 10

18 7.5 5

1

Element Node-1 Node-2 Node-3 Element Node-1 Node-2 Node-3

1 1 2 9 25 15 16 23

2 1 9 8 26 15 23 22

3 2 3 10 27 16 17 24

4 2 10 9 28 16 24 23

5 3 4 11 29 17 18 25

6 3 11 10 30 17 25 24

7 4 5 12 31 18 19 26

8 4 12 11 32 18 26 25

9 5 6 13 33 19 20 27

10 5 13 12 34 19 27 26

11 6 7 14 35 20 21 28

12 6 14 13 36 20 28 27

13 8 9 16 37 22 23 30

14 8 16 15 38 22 30 29

15 9 10 17 39 23 24 31

16 9 17 16 40 23 31 30

17 10 11 18 41 24 25 32

18 10 18 17 42 24 32 31

19 11 12 19 43 25 26 33

20 11 19 18 44 25 33 32

21 12 13 20 45 26 27 34

22 12 20 19 46 26 34 33

23 13 14 21 47 27 28 35
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24 13 21 20 48 27 35 34

11

7          1          0

14        1          0  

21        1          0

28        1          0

35        1          0

29        1          1

30        1          0.965

31        1           0.866

32        1           0.707

33        1           0.5

34        1           0.258

0

Triangular element mesh  12 8�

The given area was divided into 117 nodes with 192 triangular elements of equal edge length.

Number of nodes =117        

Number of elements =192

Node X co-ordinate Y co-ordinate Node X co-ordinate Y co-ordinate

1 0 0 60 8.75 5

2 1.25 0 61 10 5

3 2.5 0 62 11.25 5

4 3.75 0 63 12.5 5

5 5 0 64 13.75 5

6 6.25 0 65 15 5

7 7.5 0 66 0 6.25

8 8.75 0 67 1.25 6.25

9 10 0 68 2.5 6.25
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10 11.25 0 69 3.75 6.25

11 12.5 0 70 5 6.25

12 13.75 0 71 6.25 6.25

13 15 0 72 7.5 6.25

14 0 1.25 73 8.75 6.25

15 1.25 1.25 74 10 6.25

16 2.5 1.25 75 11.25 6.25

17 3.75 1.25 76 12.5 6.25

18 5 1.25 77 13.75 6.25

19 6.25 1.25 78 15 6.25

20 7.5 1.25 79 0 7.5

21 8.75 1.25 80 1.25 7.5

22 10 1.25 81 2.5 7.5

23 11.25 1.25 82 3.75 7.5

24 12.5 1.25 83 5 7.5

25 13.75 1.25 84 6.25 7.5

26 15 1.25 85 7.5 7.5

27 0 2.5 86 8.75 7.5

28 1.25 2.5 87 10 7.5

29 2.5 2.5 88 11.25 7.5

30 3.75 2.5 89 12.5 7.5

31 5 2.5 90 13.75 7.5

32 6.25 2.5 91 15 7.5

33 7.5 2.5 92 0 8.75

34 8.75 2.5 93 1.25 8.75

35 10 2.5 94 2.5 8.75

36 11.25 2.5 95 3.75 8.75

37 12.5 2.5 96 5 8.75

38 13.75 2.5 97 6.25 8.75

39 15 2.5 98 7.5 8.75

40 0 3.75 99 8.75 8.75

41 1.25 3.75 100 10 8.75

42 2.5 3.75 101 11.25 8.75

43 3.75 3.75 102 12.5 8.75
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44 5 3.75 103 13.75 8.75

45 6.25 3.75 104 15 10

46 7.5 3.75 105 0 10

47 8.75 3.75 106 1.25 10

48 10 3.75 107 2.5 10

49 11.25 3.75 108 3.75 10

50 12.5 3.75 109 5 10

51 13.75 3.75 110 6.25 10

52 15 3.75 111 7.5 10

53 0 5 112 8.75 10

54 1.25 5 113 10 10

55 2.5 5 114 11.25 10

56 3.75 5 115 12.5 10

57 5 5 116 13.75 10

58 6.25 5 117 15 10

59 7.5 5

1

Element Node-1 Node-2 Node-3 Element Node-1 Node-2 Node-3

1 1 2 15 97 53 54 67

2 1 15 14 98 53 67 66

3 2 3 16 99 54 55 68

4 2 16 15 100 54 68 67

5 3 4 17 101 55 56 69

6 3 17 16 102 55 69 68

7 4 5 18 103 56 57 70

8 4 18 17 104 56 70 69

9 5 6 19 105 57 58 71

10 5 19 18 106 57 71 70

11 6 7 20 107 58 59 72

12 6 20 19 108 58 72 71

13 7 8 21 109 59 60 73

14 7 21 20 110 59 73 72
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15 8 9 22 111 60 61 74

16 8 22 21 112 60 74 73

17 9 10 23 113 61 62 75

18 9 23 22 114 61 75 74

19 10 11 24 115 62 63 76

20 10 24 23 116 62 76 75

21 11 12 25 117 63 64 77

22 11 25 24 118 63 77 76

23 12 13 26 119 64 65 78

24 12 26 25 120 64 78 77

25 14 15 28 121 66 67 80

26 14 28 27 122 66 80 79

27 15 16 29 123 67 68 81

28 15 29 28 124 67 81 80

29 16 17 30 125 68 69 82

30 16 30 29 126 68 82 81

31 17 18 31 127 69 70 83

32 17 31 30 128 69 83 82

33 18 19 32 129 70 71 74

34 18 32 31 130 70 84 83

35 19 20 33 131 71 72 85

36 19 33 32 132 71 85 84

37 20 21 34 133 72 73 86

38 20 34 33 134 72 86 85

39 21 22 35 135 73 74 87

40 21 35 34 136 73 87 86

41 22 23 36 137 74 75 88

42 22 36 35 138 74 88 87

43 23 24 37 139 75 76 89

44 23 37 36 140 75 89 88

45 24 25 38 141 76 77 90

46 24 38 37 142 76 90 89

47 25 26 39 143 77 78 91

48 25 39 38 144 77 91 90
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49 27 28 41 145 79 80 93

50 27 41 40 146 79 93 92

51 28 29 42 147 80 81 94

52 28 42 41 148 80 94 93

53 29 30 43 149 81 82 95

54 29 43 42 150 81 95 94

55 30 31 44 151 82 83 96

56 30 44 43 152 82 96 95

57 31 32 45 153 83 84 97

58 31 45 44 154 83 97 96

59 32 33 46 155 84 85 98

60 32 46 45 156 84 98 97

61 33 34 47 157 85 86 99

62 33 47 46 158 85 99 98

63 34 35 48 159 86 87 100

64 34 48 47 160 86 100 99

65 35 36 49 161 87 88 101

66 35 49 48 162 87 101 100

67 36 37 50 163 88 89 102

68 36 50 49 164 88 102 101

69 37 38 51 165 89 90 103

70 37 51 50 166 89 103 102

71 38 39 52 167 90 91 104

72 38 52 51 168 90 104 103

73 40 41 54 169 92 93 106

74 40 54 53 170 92 106 105

75 41 42 55 171 93 104 107

76 41 55 54 172 93 107 106

77 42 43 56 173 94 95 108

78 42 56 55 174 94 108 107

79 43 44 57 175 95 96 109

80 43 57 56 176 95 109 108

81 44 45 58 177 96 97 110

82 44 58 57 178 96 110 109
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83 45 46 59 179 97 98 111

84 45 59 58 180 97 111 110

85 46 47 60 181 98 99 112

86 46 60 59 182 98 112 111

87 47 48 61 183 99 100 113

88 47 61 60 184 99 113 112

89 48 49 62 185 100 101 114

90 48 62 61 186 100 114 113

91 49 50 63 187 101 102 115

92 49 63 62 188 101 115 114

93 50 51 64 189 102 103 116

94 50 64 63 190 102 116 115

95 51 52 65 191 103 104 117

96 51 65 64 192 103 117 116

21

13      1       0

26      1       0

39      1       0

52      1       0

65      1       0

78      1      0

91      1      0

104    1      0

105    1      1  

106    1      0.9914

107    1      0.9659

108    1      0.9238

109    1      0.866
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110    1      0.793

111    1      0.707

112    1      0.608

113    1      0.5

114    1      0.382

115    1      0.258

116    1      0.130

 1      0

b) Two-dimensional groundwater flow considering pumping and recharge

The second problem considered is  a two dimensional  ground water  flow problem

considering recharge and pumping in a rectangular  aquifer domain.  The lines of constant

potential  (equipotential  lines) in a 3000 m  �  1500 m rectangular aquifer shown in fig.3

bounded on the long sides by an impermeable material and on the short sides by a constant

head of 200 m is obtained by analysing the problem. A river is passing through the aquifer

having an infiltration rate of 0.24 m3  / day / m2.  Two pumps are located at (1000, 670) and

(1900, 900) with pumping at rates of  1Q = 1200  m3  / day /  m and  2Q =2400 m3  / day /  m

respectively. Take co-efficient of permeability k as 50 m3 / day / m2.
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pump2

pump1
river.24m

Impermeableboundary

Impermeableboundary

1500m

3000m

constant water
head Q=200m

constant water
head Q=200m

Figure. 3 Geometry and boundary conditions for the groundwater flow problem.

A mesh of 64 triangular elements and 45 nodes is used to model the domain. The river

forms the inter-element boundary (33, 35, 37, 39) and (26, 28, 30, 32). In the mesh selected,

neither pump is located at a node. If the pumps are located at a node then the rate of pumping

is input as the specified secondary variable of the node. When a source is located at a point

other  than  a  node,  we must  calculate  its  contribution  to  the nodes.  Similarly,  the source

components due to the distributed line source (i.e., the river) should be computed.
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Fig. 4 Finite element mesh with numbering scheme

Program input:

Number of nodes = 45

Number of elements =  64

N0de X Co-ordinate Y Co-ordinate Node X Co-ordinate Y Co-ordinate

1 0 0 24 1250 1125

2 0 375 25 1000 1500

3 0 750 26 2250 0

4 0 1125 27 2062 375

5 0 1500 28 1872 750

6 500 0 29 1688 1125

7 375 375 30 1500 1500

8 438 750 31 2500 0
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9 313 1125 32 2375 375

10 250 1500 33 2250 750

11 1000 0 34 2125 1125

12 937 375 35 2000 1500

13 875 750 36 2750 0

14 625 1125 37 2687 375

15 500 1500 38 2625 750

16 1500 0 39 2563 1125

17 1312 375 40 2500 1500

18 1125 750 41 3000 0

19 937 1125 42 3000 375

20 750 1500 43 3000 750

21 2000 0 44 3000 1125

22 1750 375 45 3000 1500

23 1500 750

50

Element Node1 Node2 Node3 Element Node1 Node2 Node3

1 1 7 2 33 21 27 22

2 1 6 7 34 21 26 27
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3 2 8 3 35 22 28 23

4 2 7 8 36 22 27 28

5 3 9 4 37 23 29 24

6 3 8 9 38 23 28 29

7 4 10 5 39 24 30 25

8 4 9 10 40 24 29 30

9 6 12 7 41 26 32 27

10 6 11 12 42 26 31 32

11 7 13 8 43 27 33 28

12 7 12 13 44 27 32 33

13 8 14 9 45 28 34 29

14 8 13 14 46 28 33 34

15 9 15 10 47 29 35 30

16 9 14 15 48 29 34 35

17 11 17 12 49 31 37 32

18 11 16 17 50 31 36 37

19 12 18 13 51 32 38 33

20 12 17 18 52 32 37 38

21 13 19 14 53 33 39 34

22 13 18 19 54 33 38 39

23 14 20 15 55 34 40 35
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24 14 19 20 56 34 39 40

25 16 22 17 57 36 42 37

26 16 21 22 58 36 41 42

27 17 23 18 59 37 43 38

28 17 22 23 60 37 42 43

29 18 24 19 61 38 44 39

30 18 23 24 62 38 43 44

31 19 25 20 63 39 45 40

32 19 24 25 64 39 44 45

10

1 1  200 

2  1  200

3 1  200

4  1  200

5  1  200

41 1 200 

42 1  200 

43 1  200

44 1  200

45 1  200
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11

12  -255.6

13  -229.2

18  -715.2

21   54.08

22   108.17

23  108.17

24  108.17

25  54.08

28  -1440.0

29  -410.4

34  -549.6

3.2 SOFTWARE PACKAGE ANSYS

ANSYS is general-purpose finite element analysis (FEA) software package. ANSYS

software allows engineers to construct computer models of structures, machine components

or systems; apply operating loads and other design criteria;  and study physical responses,

such  as  stress  levels,  temperature  distributions,  pressure,  etc.  The  software  implements

equations that govern the behaviour of elements and solve them; creating a comprehensive

explanation  of  how the  system acts  as  a  whole.  These  results  then  can  be  presented  in

tabulated  or  graphical  form.  This  type  of  analysis  is  typically  used  for  the  design  and

optimization of a system far too complex to analyze by hand. Systems that may fit into this

category are too complex due to their geometry, scale, or governing equations. ANSYS also

provides a cost-effective way to explore the performance of products or processes in a virtual

environment.

3.2.1 Steps to Solve Problems in ANSYS 
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Like solving any problem analytically, it is essential to define (1) solution domain, (2)

the physical model, (3) boundary conditions and (4) the physical properties. Then solve the

problem and post processing of the results. The commercial finite element package, ANSYS

version  10,  was  used  for  modelling  and  analysis.  Below  describes  the  processes  in

terminology slightly more attune to the software.

 Build Geometry

Construct a two or three dimensional representation of the object to be modeled and

tested using the work plane coordinates system within ANSYS.

 Define Material Properties

Now that the part exists, define a library of the necessary materials that compose the

object (or project) being modeled. This includes thermal and mechanical properties.

 Selection of element

From the library of ANSYS elements provided suitable element is selected for the

analysis of problem.

 Generate Mesh

At  this  point  ANSYS understands  the  makeup  of  the  part.  Now  define  how the

modeled system should be broken down into finite pieces.

 Apply Loads

Once  the  system is  fully  constructed,  the  last  task  is  to  burden  the  system with

constraints, such as physical loadings or boundary conditions. 

 Obtain Solution

This is actually a step, because ANSYS needs to understand within what state (steady

state, transient etc.) the problem must be solved.

 Post-processing of
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  the Results

After the solution has been obtained, there are many ways to present ANSYS results,

choose from many options such as tables, graphs, and contour plots.

3.2.2 Analysis of problems using the finite element software package ansys

a) Two dimensional heat transfer problem (12x6) solved above is analysed using ANSYS

Modelling  and  meshing  of  two  dimensional  rectangular  region  was  done  using

element type SOLID 8node77.

b)  Stress analysis in a sub-soiler 

          Modelling and meshing of three dimensional region was done using element type Shell

Elastic 4node 63.
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CHAPTER IV

RESULTS AND DISCUSSION

A) Heat transfer

A numerical  solution  for  the  heat  flow  equation  using  finite  element  method  is

obtained for an isotropic  rectangular  region  using the program developed in the  object-

oriented programming language visual c++.The nodal temperature distribution fig.(6) in the

domain were obtained and the result obtained were compared with analytical solution and

also using the software package ANSYS. We have analyzed a simple heat transfer problem,

though the developed program can handle other complex heat transfer problems like heat

transfer in heat exchangers, furnaces etc. and also can optimize the design of various heat

transfer applications.  Three sets of solutions were obtained with triangular element meshes

of  3 2� ,   6 4�  and  12 8� . By increasing the number of elements, accuracy is found to

increase.  The  nodal  temperatures  obtained  for  various  meshes  are  tabulated  in  table  (1),

which shows the increase in accuracy with the increase in number of elements. A graph is

also plotted for the nodal temperature along lower edge for various meshes and compared

with the analytical solution in Fig. (5).

Fig.5 Graphical representation of lower edge node temperature values and analytical

solution.
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Fig.6 ANSYS output of thermal analysis

Table:1 Comparison of different element meshes with analytical solution and ANSYS
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b)Groundwater

The area under study is discretized with 45 nodes and 64 elements. Bibbin Sunny et al

studied the same problem by considering the pumping location to be in the nodes but in this

work meshes are selected in such a way that the pumps are not located at the nodes. So the

effect  of  generalized  force  due  to  the  point  source  to  the  neighbouring  nodes  is  also

calculated. The effect of river ie. recharge is calculated considering it as a line distributed

load. The effect of pumping to the neighbouring nodes is calculated by spatial interpolation.

On solution of the problem, the piezometric head, the primary variable, is obtained at various

nodes.  The  greatest  drawdown  is  found  to  occur  at  node  28.  Based  on  the  maximum

drawdown and its location one can easily determine the total volume that may be withdrawn

annually  from  the  aquifer  and  also  identify  the  best  potential  locations  for  future  well

installations and show how the pumping of one or more wells will affect the other wells in

the aquifer and surface water bodies.

c)Farm power
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Finite  element  is  an effective tool for investigation of 2D analysis  in implements.

Study focuses on static behaviour of L-shaped Subsoilers. Maximum stress was obtained near

the shank’s hole as 290MPa. Results showed that fracture probability of the subsoiler near the

shank’s hole is due to the existence of a bending moment which is produced by the soil

resistance force acting on the blades and lower section of the shank. For the subsoiler it is

necessary that the body of the subsoiler’s shank be strengthened around the holes so that the

failure can be avoided. It is also found that upper two shanks holes are not necessary. Hence

the material can be reduced 

Fig.7 ANSYS output of the subsoiler (Von Mises stress)

Fig. 8 ANSYS output of subsoiler (Major principle stress)
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CHAPTER V

SUMMARY AND CONCLUSION

Agricultural  engineering  being  a  field  of  application  of  engineering  principles  in

agriculture, deals with many complex problems. The design of simple machine or tool may

have many parameters to be considered. The optimal management of groundwater resources

is an important task in agricultural engineering. Management of groundwater system means

making decisions related to volume of water that can be drawn, location of pumping and

artificial  recharge  wells,  if  there  is  groundwater  contamination,  decision  has  to  be  made

related  to  groundwater  quality.  FEM act  as a tool to asses the nature and distribution of

subsurface flow. Heat transfer analysis is of great importance and vast application in the field

of  agricultural  engineering  especially  in  the branch of post harvest  engineering  and food

processing.  FEM is key in analyzing the cold and hot spots in various food materials  of

irregular  geometries,  predicting  the  microbial  distribution  and  nutrient  degradation,

optimizing  the  process  and  in  developing  information  and  nomograms  to  educate   the

consumer on heating techniques for food safety and quality.

 FEM software helps in simulation of real  life  situation and practical  difficulty  in

modelling  and  analysis  of  a  system,  and   its  optimization.  FEM  has  been  decisive  in

decreasing the developing time of products, as the design and development of the prototype

became much easier with FEM .

The future scope of our study are Optimization of subsoiler design for various shape

and various inclination angles.FEM studies can be done for various implements such as MB

plough, cultivators, mowers, machine elements, engine parts etcWe can select suitable shape

and materials based on the factor of safety. FEM can be easily utilized for the design of heat

exchangers its shape, length, surface area. 

A finite  element  formulation has  been developed for  two dimensional  analysis  of

Poisson's equation. Various numerical problems in the field of ground water, farm machinery

and heat has been analyzed and results compared with available analytical results and using

software package ANSYS 
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APPENDIX A

// Program for Finite Element Analysis of 2D Ground Water Flow and Heat transfer

Problems

#include <fstream.h>

#include <iostream.h>

#include <iomanip.h>

#include <math.h>

#include "Mat.h"

#include "Vec.h"

void triangle( void);

dMatrix ecoeff(3,3);

dVector  eQ(3), xl(2);

dVector N(3), Nxi(3);

int  neq;

double delta,Q;

double K, b1, b2, b3, c1, c2, c3;

double X1,X2,X3,Y1,Y2,Y3;

void main(void)

{

ifstream fin ("2DGW flow.inp");
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ofstream fout("2DGW flow.out");

    dMatrix gC;

fout.setf(ios::showpoint);

fout.setf(ios::floatfield, ios::fixed);

fout.precision(4);

int nElems, nNodes, nknownheads;

int  i, j, k;

fin >> nNodes >> nElems;

dVector X(nNodes), Y(nNodes);

for (i=1; i<=nNodes; ++i)

{

fin >> k;

fin >> X[k] >> Y[k];

}

fout << "\n*********************************\n";

fout << "\n FINITE ELEMENT ANALYSIS PROGRAM\n";

fout << "\n*********************************\n\n";

fout << "Problem Type: 2D Ground Water Flow Problems\n";

fout << "\nNumber of nodes    =  " << nNodes;

fout << "\nNumber of elements =  " << nElems;

fout << "\n\nNodal Coordinates";
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fout << "\n~~~~~~~~~~~~~~~~~\n";

fout << "\nNode    x-coord.     y-coord.\n";

fout <<"=============================";

for (i=1; i<=nNodes; ++i)

{

fout << "\n" << setw(4) << i << setw(12);

fout << X[i] << setw(12) << Y[i] << setw(12);

}

fin >> K;

 iMatrix elemConn(3, nElems); 

fout << "\n\nElement Connectivity";

fout << "\n~~~~~~~~~~~~~~~~~~~~\n";

fout <<"\n  Elem  Nod1   Nod2   Nod3 \n";

fout <<"================================\n";

for (i=1; i<=nElems; ++i)

{

fin >> k;

for (j=1; j<=3; ++j)

fin >> elemConn(j, k);

}

for (i=1; i<=nElems; ++i)
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{

fout << "\n" << setw(4) << i << setw(5);

for (j=1; j<=3; ++j)

fout << elemConn(j, i) << setw(7);

}

dVector U(nNodes); 

iVector destn( nNodes), destn1(nNodes);

    int dof;

fin >> nknownheads; 

fout << "\n\nNumber of nodes at which displacement is prescribed  =  " <<

nknownheads;

for (i=1; i<=nknownheads; ++i)

{

fin >> k;

dof = k;

fin >> destn[k] >> U[dof];

}

neq = 0;

for (j=1; j<=nNodes; ++j)

{

if (destn[ j] == 0)

{
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neq++;

destn[ j] = neq;

continue;

}

else

destn[ j] = 0;

}

fout << "\n\nThe Destination Array:";

fout << "\n~~~~~~~~~~~~~~~~~~~~~\n";

fout << "\n  Node         X-dof            \n";

fout <<"==========================================";

for (i=1; i<=nNodes; ++i)

{

fout << "\n" << setw(4) << i << setw(9);

fout << destn[ i] << setw(9);

}

fout << "\n\nNo. of Degrees of Freedom =  " << neq;

dVector gLoad(neq);

dVector gDisp(neq);

double Q, pres_head[3], eLoad_head[3];

int nknownQ;
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fin >> nknownQ;

for (i=1; i<=nknownQ; ++i)

{

fin >> k;

dof = destn[ k];

fin >> Q;

if (dof != 0)

gLoad[dof] += Q;

}

int dof1, tot_dof;

dMatrix gcoeff(neq,neq);

for (i=1; i <= nNodes; ++i)

{

dof = destn[ i];

double zero = 0.0;

fout << "\n "<< setw(4) <<i;

if (dof != 0)

fout << setw(15) << gLoad[dof] << setw(15) << dof;

else

fout << setw(15) << zero;

}
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gcoeff = 0;

// Assembly of element matrices

iVector kk(2), kkA(2);

int l,node1,node2, node3, node;

for (int n=1; n<=nElems; ++n)

{

node1 = elemConn(1, n);

node2 = elemConn(2, n);

node3 = elemConn(3, n);

X1 = X[node1];

       X2 = X[node2];

    X3 = X[node3];

    Y1 = Y[node1];

    Y2 = Y[node2];

    Y3 = Y[node3];

b1 = Y[node2]-Y[node3];

b2 = Y[node3]-Y[node1];

b3 = Y[node1]-Y[node2];

c1 = X[node3]-X[node2];

c2 = X[node1]-X[node3];

c3 = X[node2]-X[node1];
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delta=  (c3 * b2 - c2 * b3);

triangle();

fout << "\necoeff =" << ecoeff;

dof = 0;

for (i=1; i<=3; ++i)

{

dof ++;

int node = elemConn(i, n);

kk[dof] = destn[ node];

}

tot_dof =3;

dof1 = 0;

for (i=1; i<=3; ++i)

{

node = elemConn(i,n);

dof1 ++;

dof = node ;

pres_head[dof1] = U[dof];

}

for (i=1; i<=tot_dof; ++i)

{
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eLoad_head[i] = 0.;

for (j=1; j<=tot_dof; ++j)

{

eLoad_head[i] += ecoeff(i,j) * pres_head[j];

}

}

    for (int m=1; m<=tot_dof; ++m)       

{

if (kk[m] <= 0)

continue;

k = kk[m];

gLoad[k] += eQ[m] - eLoad_head[m];

for (j=1; j<=tot_dof; j++)

{

if (kk[j] <= 0)

continue;

    l= kk[j] ;

gcoeff(k,l) +=  ecoeff(m,j);

}

 }

}
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fout << "\ngcoeff ="<< gcoeff;

fout << "\ngLoad ="<< gLoad;

gDisp = gcoeff^gLoad;

fout << "\ngDisp = " << gDisp;

fout << "\n\nGlobal Displacement Vector";

fout <<"\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~";

for (i=1; i<=nNodes; ++i)

{

U[i] = gDisp[destn[i]];

}

for (j=1; j<=nNodes; ++j)

{

fout << "\n" << setw(4) << j << setw(15);

fout << U[j] << setw(15);

}

}

void triangle( void)

{

double dn1dx,dn2dx,dn3dx,dn1dy,dn2dy,dn3dy;

double s11,s12,s13,s21,s22,s23,s31,s32,s33;

dn1dx = (Y2 - Y3) / delta;
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dn2dx = (Y3 - Y1) / delta;

dn3dx = (Y1 - Y2) / delta;

dn1dy = (X3 - X2) / delta;

dn2dy = (X1 - X3) / delta;

dn3dy = (X2 - X1) / delta;

dMatrix s(3,3);

s11= (dn1dx * dn1dx + dn1dy * dn1dy) * K * delta / 2;

    s12= (dn1dx * dn2dx + dn1dy * dn2dy) * K * delta / 2;

    s13= (dn1dx * dn3dx + dn1dy * dn3dy) * K * delta / 2;

s22= (dn2dx * dn2dx + dn2dy * dn2dy) * K * delta / 2;

s23= (dn2dx * dn3dx + dn2dy * dn3dy) * K * delta / 2;

s33= (dn3dx * dn3dx + dn3dy * dn3dy) * K * delta / 2;

s21 = s12;

s31 = s13;

s32 = s23;

ecoeff=0;

ecoeff(1,1) = s11;

ecoeff(1,2) = s12;

ecoeff(1,3) = s13;

ecoeff(2,1) = s21;

ecoeff(2,2) = s22;
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ecoeff(2,3) = s23;

ecoeff(3,1) = s31;

ecoeff(3,2) = s32;

ecoeff(3,3) = s33;

}
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ABSTRACT

Numerical  modelling  is  becoming  an  increasingly  important  tool  for  analyzing

complex problems in the agricultural engineering related problems. Numerical models,

particularly the finite difference and finite element methods, were extensively used for

modelling  such a complex systems. A finite  element  formulation of two-dimensional

groundwater flow and heat transfer problems were developed and a Visual C++ program

is used for this purpose to obtain primary unknowns hydraulic head and temperature at

the nodes. The domain of the problem was discretized into linear triangular elements.

The numerical solutions were obtained for groundwater flow considering pumping and

recharge  and heat  transfer  in  an  isotropic  rectangular  region.  By the  analysis  of  the

hydraulic head solution results, one can easily obtain the flow direction vectors, flow

velocities and flow rates in different directions and in the same way nodal temperatures

can be used to obtain heat flow rates, thermal flux and thermal gradient. ANSYS is a

general purpose engineering simulation software package based on the finite element

analysis,  allowing  engineers  to  refine  and  validate  designs  at  a  stage  when  cost  of

making changes is minimal. ANSYS simulation software can predict how product design

will operate and manufacturing processes will behave in real world environments. 

The analysis in ANSYS consists of three steps the pre-processing, the analysis and

the  post-processing.  By  post-processing  the  obtained  results  can  be  presented  in  a

desired form. In this work two problems were analysed using ANSYS, the heat transfer

in an isotropic medium and the stress analysis of a sub-soiler. The results obtained by

finite  element  program  developed  for  the  heat  transfer  problem  is  compared  with

ANSYS results and also analytical results and results are found to compare well. From

the stress analysis of the sub-soiler, it is found that the stress near the upper two holes of

the sub-soiler is very small and so the upper two holes can be avoided. FEM improve

accuracy, enhance the design and better insight into critical design parameters, virtual

prototyping,  fewer  hardware  prototypes,  a  faster  and  less  expensive  design  cycle,

increased productivity, and increased revenue.
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