

KERALA AGRICULTURAL UNIVERSITY
B. Tech. (Food Technology) 2024 Admission
III Semester Final Examination – January 2026

BES 2118

Engineering Mathematics – I (2+0)

Marks: 50
Time: 2 hours

- I** **Answer the following** **(10x1=10)**
1. Expand $\sin x$ in Taylor's series form about $x = \pi/4$.
 2. Define asymptote of a curve.
 3. Find $\frac{\partial u}{\partial x}$ if $u = x^y$.
 4. If $x = r\cos\theta$, $y = r\sin\theta$ then find the Jacobian x, y with respect to r, θ .
 5. State Green's theorem
 6. Write Bernoulli's differential equation.
 7. Solve $\frac{dy}{dx} + y = x$.
 8. Find the Particular integral of $(D^2 + 1)y = \cos 3x$.
 9. Write the Cauchy's homogeneous linear differential equation.
- Fill in the blanks**
10. $\Gamma(1/2) = \dots$
- II** **Write short notes on ANY FIVE of the following** **(5x2=10)**
1. Using Maclaurin's series expand $\tan x$ upto the term containing x^5 .
 2. Find the radius of curvature of $x^3 + y^3 = 3axy$ at the point $(3a/2, 3a/2)$.
 3. Given that $u = \sin(x/y)$, $x = e^t$ and $y = t^2$. Find du/dt .
 4. Express $\int_0^1 \frac{dx}{\sqrt{1-x^4}}$ in terms of gamma function.
 5. Solve $(D^3 + 1)y = 0$.
 6. Define (i) Scalar point function and (ii) Vector Point function. Give one example to each.
 7. If $\mathbf{R} = xi + yj + zk$ then show that $\text{curl}(\mathbf{R}) = 0$
- III** **Answer ANY FIVE of the following** **(5x4=20)**
1. Trace the curve $r = a \sin 3\theta$.
 2. If $z = f(x + ct) + \phi(x - ct)$, then prove that $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$
 3. Find the volume of the sphere of radius 'a'.
 4. Verify exactness and solve $(x^2 - ay)dx = (ax - y^2)dy$
 5. Solve $(D^2 - 4D + 3)y = \sin 3x \cos 2x$
 6. Solve $dx/dt = 5x + y$; $dy/dt = y - 4x$.
 7. If $\mathbf{F} = (x + y + 1)i + j - (x + y)k$ then show that $\mathbf{F} \cdot \text{curl} \mathbf{F} = 0$
- IV** **Write an essay on ANY ONE of the following** **(1x10=10)**
1. (a) Find the maximum and minimum distance of the point $(3, 4, 12)$ from the sphere $x^2 + y^2 + z^2 = 1$;
(b) Evaluate $\int_1^2 \int_1^3 xy^2 dx dy$
 2. Verify Green's theorem for $\int_C [xy(xy + y^2)dx + x^2dy]$, where C is bounded by $y = x$ and $y = x^2$
