

KERALA AGRICULTURAL UNIVERSITY
B. Tech. (Agri. Engg.) 2024 Admission
III Semester Final Examination – January 2026

BES 2106

Engineering Mathematics I (3+0)

Marks: 50

Time: 2 hours

I

Answer the following

1. Define degree of a differential equation.
2. When a first order first degree differential equation

$$M(x, y) dx + N(x, y) dy = 0$$

is said to be exact?

(10x1=10)

3. Write the eigenvalues of the matrix $\begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix}$.
4. Find the value of $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$, if $f = \frac{x^2+y^2}{\sqrt{x}-\sqrt{y}}$.
5. State the complementary function of the equation $\frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + y = 0$.
6. For the first order PDE $yu_x - x u_y = 0$, write the equation of the characteristic curves.

Fill in the blanks

7. Rank of an 3×3 invertible matrix is
8. The value of $B \begin{pmatrix} \frac{1}{2} & \frac{3}{2} \\ 2 & 2 \end{pmatrix}$ is

State True or False:

9. "If a 2×2 matrix having distinct eigenvalues, then the matrix is diagonalizable."
10. " $T: \mathbb{R} \rightarrow \mathbb{R}$, be a function defined by $T(x) = 2x + 1$ is a linear transformation."

II

Write short notes on ANY FIVE of the following

(5x2=10)

1. Find the integrating factor of the differential equation

$$\frac{dy}{dx} + \tan x \ y = e^x$$

2. Evaluate $\iint_R (x + y) dA$, where R is the rectangle $0 \leq x \leq 2, 0 \leq y \leq 1$.
3. Evaluate the integral by changing the order of integration:

$$\int_0^1 \int_y^1 e^{x^2} dx dy.$$

4. Let A be an 3×3 matrix whose eigenvalues are $-1, 0, 1$. Then find the eigenvalues of the matrix A^3 .
5. Let A be an $m \times n$ matrix with real entries. Then write the condition in terms of rank, when the system $AX = b$ has unique solution, for $b \in \mathbb{R}^m$.
6. Find the local minima of the function $f(x, y) = x^2 + y^2 - 4x - 6y + 13$.
7. Write the Maclaurin's series expansion of $\sin x$ about $x = 0$.

III

Answer ANY FIVE of the following

(5x4=20)

1. Solve the Clairaut's differential equation: $y = px + p^2$.
2. Solve the system of equation using Gauss Elimination method:

$$2x + y - z = 1; -3x - y + 2z = -4; x + 2y + z = 5$$

3. Find the rank of the matrix: $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 0 & 1 & 2 & 3 \\ 1 & 3 & 5 & 7 \end{pmatrix}$

4. Solve the differential equation using variation of parameter
 $\frac{d^2y}{dx^2} + 4y = \tan 2x.$

5. If $u = f(r)$ and $x = r \cos \theta, y = r \sin \theta$, prove that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r} f'(r)$$

6. Evaluate: $\iiint_R \frac{dxdydz}{(x+y+z+1)^3}$, where R is the region bounded by the planes $x = 0, y = 0, z = 0$ and $x + y + z = 1$.

7. Solve the PDE using Charpit's method:

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = u^2$$

IV

Write an essay on ANY ONE of the following

(1x10=10)

1. Diagonalize the matrix : $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Hence find an invertible matrix P such that $P^{-1}AP = D$ for some diagonal matrix D .
2. Prove that $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$, where $P_n(x)$ is the solution of the Legendre differential equation.
