DECLARATION

I, hereby declare that this thesis entitled "CLIMATE CHANGE IMPACT ON

OPERATION POLICY AND PERFORMANCE INDICES OF A RESERVOIR

USING MACHINE LEARNING TECHNIQUES" is a bonafide record of work done

by me during the course of project work and that it has not previously formed the basis

for the award to me for any degree/diploma, associateship, fellowship or other similar

title of any other University or Society.

Place: Tavanur

Date:

Er. Vinnakota Yesubabu

(2020-28-002)

CERTIFICATE

Certified that this thesis entitled "CLIMATE CHANGE IMPACT ON OPERATION POLICY AND PERFORMANCE INDICES OF A RESERVOIR USING MACHINE LEARNING TECHNIQUES" is a record of project work done independently by Er. Vinnakota Yesubabu under my guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to him.

Place: Tavanur **Dr. Anu Varughese**

Date: (Major Advisor, Advisory Committee)

Associate Professor

Department of Irrigation and Drainage Engineering

KCAEFT, Tavanur

CERTIFICATE

We, the undersigned members of the advisory committee of Er. Vinnakota Yesubabu (2020-28-002), a candidate for the degree of **Doctor of Philosophy in Agricultural Engineering** with major in Soil and Water Conservation Engineering, agree that the thesis entitled "CLIMATE CHANGE IMPACT ON OPERATION POLICY AND PERFORMANCE INDICES OF A RESERVOIR USING MACHINE LEARNING TECHNIQUES" may be submitted by Er. Vinnakota Yesubabu (2020-28-002), in partial fulfilment of the requirement for the degree.

Dr. Anu Varughese

(Major Advisor, Advisory Committee)
Associate Professor
Dept. of IDE
KCAEFT, Tavanur

Dr. Rema K. P.

(Member, Advisory Committee)
Professor and Head
Dept. of IDE
KCAEFT, Tavanur

Dr. Sathian K. K.

(Member, Advisory Committee)
Professor
Dept. of SWCE
KCAEFT, Tavanur

Dr. Sajeena S.

(Member, Advisory Committee)
Professor
Dept. of IDE
KCAEFT, Tavanur

Er. Shivaji K. P.

(Member, Advisory Committee)
Assistant Professor
CoA, Padanakkad

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

Words are very poor substitute to express one's emotions and feelings, there are other alternative to give vent to one's sentiments, particularly on an occasion like this, when one sits in acknowledging the debts of others.

It is my proud privilege to express my sense of gratitude and veneration to Dr. Anu Varughese, Assistant Professor, Department of Irrigation and Drainage Engineering, KCAEFT, Tavanur and Chairman of my Advisory Committee, for her inspiring guidance, constructive criticism and whole hearted encouragement throughout the period of my Research work. Words are inadequate to express my deepest feelings of my gratitude from the innermost core of my heart for all the support and trust she had in my ability. She left no stones untuned in the present accomplishment which led me explore in all the directions of my life.

With deepest sense of reverence and indebtedness, I pronounce utmost of gratitude to the esteemed members of my advisory committee Dr. Rema K. P., Professor and Head, Department of Irrigation and Drainage Engineering, Dr. Sathian K. K. Professor, Department of Soil and Water Conservation Engineering, Dr. Sajeena S. Associate Professor, Department of Irrigation and Drainage Engineering and Er. Shivaji K. P. Assistant Professor, College of Agriculture, Padanakkad. Besides their persistence efforts, sagacious guidance and impeccable planning, I am grateful to them for their kind cooperation and congenial discussion on an array of topics. I express my utmost regards to Dr. Asha Joseph Professor, Department of Irrigation and Drainage Engineering, Dr. Abdul Hakkim V. M. Professor and Head, Dr. Jinu A. Assistant Professor Department of Soil and Water Conservation Engineering for their unstinted cooperation.

I wish to extend my sincere thanks to Dr. Jayan P. R. Dean, Kelappaji College of Agricultural Engineering and Food Technology, Tavanur for providing me the essential facilities to conduct the proposed investigation. I express my sincere thanks to the authorities of Kerala Agricultural University for their whole hearted cooperation during the course of my study.

I wish to place on record my appreciation and sincere thanks to Er. Siddaram Patil, Er. Aravind, Er, Rajesh and Er. Samba Siva Rao for extending their kind cooperation.

I will ever be grateful to my mother Smt. Vinnakota Vijaya Lakshmi for her unconditional love, trust and sacrifices for me. I express my special thanks to my wife Vinnakota Priya Sahithi and daughter Vinnakota Lakshmi Chetana for their support and valuable prayers. INSPIRE fellowship provided by Department of Science and Technology during the course of the study is duly acknowledged.

Er. Vinnakota Yesubabu

CONTENTS

Chapter No.	Title	Page. No.
	LIST OF TABLES	
	LIST OF FIGURES	
	SYMBOLS AND ABBREVIATIONS	
I	INTRODUCTION	1-4
II	REVIEW OF LITERATURE	5-26
III	MATERIALS AND METHODS	27-73
IV	RESULTS AND DISCUSSION	74-169
V	SUMMARY AND CONCLUSION	170-172
	LITERATURE CITED	173-188
	APPENDICES	189-191
	ABSTRACT	192-193

LIST OF TABLES

Table No.	Title	Page No.
3.1	Salient features of the physical system of MIP	31
3.2	Features of canal system	33
3.3	CMIP6 climate models evaluated in this study	38
3.4	Land cover classes	52
3.5	CN values adopted for different land use classes	58
4.1	Precipitation ranking analysis for Malampuzha region	81
4.2	Maximum temperature ranking analysis for Malampuzha region	82
4.3	Minimum temperature ranking analysis for Malampuzha region	83
4.4	Changes in monthly maximum temperature (°C) for future period	96
4.5	Changes in monthly minimum temperature (°C) for future period	96
4.6	Changes in monthly precipitation (%) for future period	97
4.7	Non-linear module calibration parameters	101
4.8	Linear module calibration parameters	101
4.9	Initial and optimized parameter values for different sub-basins	105
4.10	Initial and optimized parameter coefficients in Muskingum equation	105
4.11	Sensitivity analysis of SWAT model parameters for Malampuzha reservoir catchment	111
4.12	Sensitive parameters with their default and fitted range of values	112
4.13	Performance indicators of ANN, WANN, SVM, WSVM, RF, WRF and MLR models during training and testing for reservoir inflow	117
4.14	Definition of five segments of different phases of the hydrograph	138
4.15	RMSE (m³/s) values of developed models in each hydrograph phase for calibration period	142
4.16	RMSE (m³/s) values of developed models in each hydrograph phase for validation period	142
4.17	Changes in average annual inflow (Mm ³) for future conditions	148

4.18	Accuracy assessment of LULC maps	150
4.19	Temporal LULC changes of Malampuzha reservoir command area	151
4.20	Future LULC changes of Malampuzha reservoir command area	152
4.21	Changes in average annual crop water demand (Mm ³) for future conditions	155
4.22	Comparison of performance indices for base period and future for different SSPs	165

LIST OF FIGURES

Figure	Title	Page
No.		No.
3.1	Study area (Malampuzha reservoir system)	30
3.2	Monthly inflow volume to Malampuzha reservoir (2003-2022)	34
3.3	The socioeconomic "Challenge Space" to be spanned by the CMIP6 SSP experiments	37
3.4	Structure of IHACRES rainfall-runoff model	45
3.5	Workflow diagram for setup and SWAT model run	48
3.6	Digital Elevation Model of Malampuzha reservoir catchment	50
3.7	Soil map of Malampuzha reservoir catchment	51
3.8	LULC map of catchment area	52
3.9	Workflow diagram for setup and HEC-HMS model run	55
3.10	Results obtained from pre-processing menu of HEC	57
3.11	CN grid map of Malampuzha reservoir catchment	59
3.12	Methodology of wavelet coupled models	65
3.13	Flowchart of inflow estimation of Malampuzha reservoir using ML techniques	66
3.14	Flow diagram of Genetic Algorithm procedure	72
4.1	Observed mean monthly precipitation vs predicted using different GCMs	76
4.2	Observed mean monthly maximum temperature (°C) vs predicted using different GCMs	77
4.3	Observed mean monthly minimum temperature (°C) vs predicted using different GCMs	78
4.4	Taylor diagram- Comparison of several bias correction techniques in simulating observed precipitation	84
4.5	Taylor diagram- Comparison of several bias correction techniques in simulating observed maximum temperature	84
4.6	Taylor diagram- Comparison of several bias correction techniques in simulating observed minimum temperature	85
4.7	Trend of average annual maximum temperature (°c) in Malampuzha from 1990 to 2100	86
4.8	Trend of average annual minimum temperature (°c) in Malampuzha from 1990 to 2100	87

4.9	Trend of average annual precipitation (mm) in Malampuzha from 1990 to 2100	87
4.10	Prediction of average monthly precipitation for near future period (2025-2049)	88
4.11	Prediction of average monthly precipitation for mid future period (2050-2074)	89
4.12	Prediction of average monthly precipitation for far future period (2075-2099)	89
4.13	Prediction of average monthly maximum temperature for near future period (2025-2049)	91
4.14	Prediction of average monthly maximum temperature for mid future period (2050-2074)	91
4.15	Prediction of average monthly maximum temperature for far future period (2075-2099)	92
4.16	Prediction of average monthly minimum temperature for near future period (2025-2049)	93
4.17	Prediction of average monthly minimum temperature for mid future period (2050-2074)	93
4.18	Prediction of average monthly minimum temperature for far future period (2075-2099)	94
4.19	Mean monthly observed vs predicted reservoir inflow by IHACRES for calibration period	102
4.20	Mean monthly observed vs predicted reservoir inflow by IHACRES for validation period	103
4.21	Basin model of Malampuzha reservoir catchment using HEC-HMS	104
4.22	Inflow comparison between observed verses HECHMS model predicted for calibration period	106
4.23	Inflow comparison between observed verses HECHMS model predicted for validation period	108
4.24	Slope map of catchment area	109
4.25	Sub basin map of Malampuzha reservoir catchment generated by SWAT	110
4.26	Pictorial representation of SWAT output for water balance components calibration of SWAT model	110
4.27	Mean monthly inflow comparison between observed verses SWAT model predicted for calibration period	113
4.28	Mean monthly inflow comparison between observed verses SWAT model predicted for validation period	114
4.29	Scatter plots of observed vs generated inflow a) IHACRES (b) SWAT (c) HECHMS during calibration period (2003-2016) for Malampuzha reservoir	116
4.30	Scatter plots of observed vs generated inflow a) IHACRES (b) SWAT (c) HECHMS during validation period (2017-2022) for Malampuzha reservoir	116

4.31	Mean monthly inflow comparison between observed verses ANN model predicted for training period	121
4.32	Mean monthly inflow comparison between observed verses ANN model predicted for testing period	122
4.33	Mean monthly inflow comparison between observed verses SVM model predicted for training period	123
4.34	Mean monthly inflow comparison between observed verses	124
4.35	SVM model predicted for testing period Mean monthly inflow comparison between observed verses RF model predicted for training period	125
4.36	Mean monthly inflow comparison between observed verses	126
4.37	SVM model predicted for testing period Mean monthly inflow comparison between observed verses WANN model predicted for training period	127
4.38	Mean monthly inflow comparison between observed verses WANN model predicted for testing period	128
4.39	Mean monthly inflow comparison between observed verses WSVM model predicted for training period	129
4.40	Mean monthly inflow comparison between observed verses WSVM model predicted for testing period	130
4.41	Mean monthly inflow comparison between observed verses WRF model predicted for training period	131
4.42	Mean monthly inflow comparison between observed verses WRF model predicted for testing period	132
4.43	Mean monthly inflow comparison between observed verses MLR model predicted for training period	133
4.44	Mean monthly inflow comparison between observed verses MLR model predicted for testing period	134
4.45	Scatter plots of model inflow a) ANN (b) SVM (c) RF (d) WANN (e) WSVM (f) WRF and (g) MLR during training period (2003-2016) for Malampuzha reservoir	135
4.46	Scatter plots of model inflow a) ANN (b) SVM (c) RF (d) WANN (e) WSVM (f) WRF and (g) MLR during testing period (2016-2022) for Malampuzha reservoir	136
4.47	Taylor diagrams of all models for (a) training and (b) testing period at Malampuzha reservoir	139
4.48	Violin plots depicting the distribution of observed inflow and predicted inflow for the developed models during (a) training and (b) testing period at Malampuzha reservoir	140
4.49	Comparison of Flow duration curves of different models during (a) training and (b) testing period at Malampuzha reservoir	141
4.50	Fig. 4.50. Comparison of mean monthly reservoir inflow (m^3/s) in near, mid and far future under (a) SSP126 (b) SSP245 and (c) SSP585 scenarios	145

4.51	Comparison of annual reservoir inflow (Mm ³) in near, mid and	147
	far futures of different SSPs	
4.52	LULC maps of Malampuzha reservoir command area for different years	153
4.53	Future LULC maps of Malampuzha reservoir command area	154
4.54	Comparison of long-term monthly mean crop water demand volume (Mm^3) in near, mid and far future of different SSPs	157
4.55	Long-term water demand vs optimal release during base period	159
4.56	Long-term water demand vs optimal release in near future period for Malampuzha reservoir	160
4.57	Long-term water demand vs optimal release in mid future period for Malampuzha reservoir	161
4.58	Long-term water demand vs optimal release in far future period for Malampuzha reservoir	162
4.59	Optimal reservoir storage level (m) for Base line and climate change conditions	164
4.60	Comparison of Reliability, Resiliency and Sustainability across different SSPs	167
4.61	Vulnerability trends across different SSPs	168

SYMBOLS AND ABBREVIATIONS

% : Percentage

< : Less than

> : Greater than

 \sum : Sum

 \leq : Less than or equal to

 \geq : Greater than or equal to

& : And

°C : Degree Celsius

AI : Artificial Intelligence

AOGCM : Atmospheric Ocean General Circulation Model

ANN : Artificial Neural Network

CMIP : Coupled Model Interpolation Project

CN: Curve Number

CP : Compromise Programming

DEM : Digital Elevation Model

ET : Evapotranspiration

et al. : and others

Fig. : Figure

GA: Genetic Algorithm

GCM : General Circulation Model/ Global Climate Model

Geo-HMS : Geospatial Hydrological Modelling System

GIS : Geographic Information System

ha: Hectare

HEC : Hydrologic Engineering CentreHMS : Hydrological Modelling System

HSG : Hydrologic Soil Group

Int. : International

IHACRES : Identification of Unit Hydrograph and Component flows from

Rainfall Evaporation and Streamflow data

IMD : Indian Meteorological Department

IPCC : Intergovernmental Panel on Climate Change

J. : Journal

Km² : Square Kilometer

LBC : Left Bank Canal

LP : Linear Programming

MCM : Million Cubic Meter

MIP : Malampuzha Irrigation Project

ML: Machine Learning

MLR : Multiple Linear Regression

No.: Number

RBC : Right Bank Canal

RCP : Representative Concentration Pathways

RF : Random Forest

SSP : Shared Socioeconomic Pathways

SVM : Support Vector Machine

SWAT : Soil and Water Assessment Tool

USGS : United States Geological Survey

WANN: Wavelet coupled ANN

WCRP : World Climate Research program

WRF : Wavelet coupled RF

WSVM : Wavelet coupled SVM