DECLARATION

I, hereby declare that this thesis entitled "THERMAL AND NON-THERMAL EXTRACTION AND PASTEURIZATION OF RED DRAGON FRUIT JUICE" is a bonafide record of research works done by me during the course of research and the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title, of any other University or Society.

Place: Tavanur

Date: NITHYA C

(2020-28-003)

CERTIFICATE

Certified that this thesis entitled "THERMAL AND NON-THERMAL EXTRACTION AND PASTEURIZATION OF RED DRAGON FRUIT JUICE" is a bonafide record of research work done independently by Er. NITHYA C (2020-28-003) under my guidance and supervision and that it has not previously formed the basis for the award of any degree, diploma, fellowship or associateship to her.

	Dr. SUDHEER K.P
Place: Tavanur	

Date: Professor & Head,

Department of Agricultural Engineering, College of Agriculture, Vellanikkara

(Major advisor, advisory committee)

CERTIFICATE

We the undersigned members of the advisory committee of Er. Nithya C (2020-28-003), a candidate for the degree of Doctor of Philosophy in Agricultural Engineering degree with major in Processing and Food Engineering, agree that this thesis entitled "THERMAL AND NON-THERMAL EXTRACTION AND PASTEURIZATION OF RED DRAGON FRUIT JUICE" may be submitted by Er. Nithya C (2020-28-003), in partial fulfilment of the requirement for the degree.

Dr. Sudheer K.P

(Major advisor)

Professor & Head,

Department of Agricultural Engineering,

College of Agriculture, Vellanikkara,

Dr. Prince M.V	Dr. Rajesh G.K	Dr. Suma Nair
Professor & Head	Assistant Professor,	Assistant Professor,
Department of PFE,	Department of PFE,	Agricultural Research
KCAEFT, Tavanur	KCAEFT, Tavanur	Station, Mannuthy
(Member)	(Member)	(Member)
,		

Dr. Lakshmi E Jayachandran

Assistant Professor

Department of Food Process Technology
KUFOS, Kochi
(Member)

Dr. V. Thirupathi

Professor
Centre for Post Harvest Technology
TNAU, Coimabatore
(External Examiner)

Dedicated to the farmers

and all curious souls

whose passion for food

and agriculture drives innovation and

discovery

ACKNOWLEDGEMENT

This thesis is the fulfilment of my long-cherished dream. I am deeply grateful to the **God** almighty and my inner self for the strength, confidence, and willpower to pursue my passion and overcome the challenges along the way. I firmly believe that where there is a will, there is a way. I hope to inspire students who read this to follow their inner calling and believe in themselves. In tough times, always remember: the human spirit is stronger than any adversity.

This journey was not an easy one. I firmly believe that God manifests in human form, guiding us through difficulties. First and foremost, I extend my heartfelt gratitude to **Dr. V. P. Gangadaran and Dr. Chithrathara K** and all other **doctors, nurses, and hospital staffs** who treated and continue to treat the rare form of cancer I unexpectedly encountered at the beginning of my PhD. I am immensely thankful to the kind-hearted people I met during this challenging phase and deeply appreciate their prayers and support.

I am forever grateful to my dearest mother, **Pushpalatha M**, whose unwavering love, boundless care, and endless support have been the foundation of my strength, my father, **Mohandas C**, my sister, **Neethu Thankam C**, and my brother-in-law, **Prasanth P**, who stood by me through every phase of my life, offering their unconditional love and encouragement. Without them, this achievement would not have been possible. I also extend my deepest gratitude to my beloved extended family, especially my dear **grandmother**, whose prayers and unwavering belief in me have been a source of immense strength and inspiration. I am truly blessed to have such a loving and supportive family by my side.

I sincerely appreciate my college, Kelappaji College of Agricultural Engineering and Food Technology, and all the faculty, staff and students for their prayers and encouragement throughout my studies. I extend my gratitude to **Dr. Jayan P. R.**, Dean, KCAEFT, previous dean **Dr. Sathyan K.K** for their support during my academic journey. I am also grateful to **Dr. Sajeena S**, current academic officer and **Dr. Rema K.P**, former academic officer, KCAEFT, Tavanur, for their invaluable guidance and support throughout my studies.

I am profoundly thankful to my major advisor, **Dr. Sudheer K. P.**, for his constant guidance, invaluable insights, and unwavering support. I deeply appreciate the cutting-edge lab

Engineering, College of Agriculture, Vellanikkara, where i conducted most of my research. I am also extremely grateful to **Dr. S. Abdullah**, Assistant Manager, Agribusiness Incubator, for his mentorship, timely assistance in reviewing my work, and clearing my doubts. Without his support, completing my research would have been impossible. I extend my heartfelt thanks to the faculties and staffs of the Agribusiness Incubator, Department of Agricultural Engineering, College of Agriculture, Vellanikkara, for their assistance during my studies. My sincere thanks go to **Dr. Shahanas E.** for her unwavering support. I also thank **Dr. Vithu Prabha**, and **Er. Abhishek S.** for their technical help during my research. I also appreciate **Er. Navya K. P., Er. Anjaly Balakrishnan, Er. Arsha Sugathan, Er. Ashitha Thomas, Ms. Juhiya.C.B, and Er. Anuj Sonal** for their assistance in lab analysis. I also thank **Mr. Sreekesh P. S.** and **Mr. Jithin M. C** for their technical assistance during my research.

I am deeply grateful to my advisory committee members: Dr. Prince M. V, Professor & Head, Department of Processing & Food Engineering, KCAEFT, Dr. Rajesh G. K., Assistant Professor, Department of Processing & Food Engineering, KCAEFT, Dr. Suma Nair, Assistant Professor, Agricultural Research Station, Mannuthy, and Dr. Lakshmi E. Jayachandran, Assistant Professor, Department of Food Process Technology, KUFOS, Kochi. Their constant support, encouragement, and valuable feedback were instrumental during my coursework, seminars, and research. A special note of gratitude to Dr. Lakshmi E. Jayachandran for her encouragement during my challenging times. Her words inspired me to persist, even when i struggled to obtain microbiological results, ultimately leading to my success.

I am also thankful to Ms. Dilna K. C., Assistant Professor (Microbiology), School of Health Sciences, University of Calicut; Dr. Riju M. C., Assistant Professor (Microbiology), Pazhassiraja College, Wayanad; and Dr. Sruthi P. B., Assistant Professor (Microbiology), KCAEFT, for their guidance in microbiological work and for providing practical suggestions to improve my research. My gratitude extends to Dr. Pratheesh P. Gopinath, Head of the Department of Agricultural Statistics, College of Agriculture, Vellayani, and Ms. Prajitha N. K., Assistant Professor (Statistics), KCAEFT, for their assistance with statistical analysis. I also appreciate Dr. M. Hema, Assistant Professor, Department of Agricultural Economics, College of Agriculture, Vellanikkara, for her insights on cost analysis. Additionally, I extend my gratitude to Dr. Santhi Mary Mathew, Retired Professor (Processing and Food

Engineering), KCAEFT, for her support, and prayers. I also thank **Ms. Sreeja R**, Assistant Professor (Biochemistry). KCAEFT for her love and support during my studies. I am grateful to **Mr. Harris** (Librarian i/c) and all other library staffs in KCAEFT for their library services and moral support during the period of my research.

My heartfelt thanks go to my seniors—Dr. Saranya S, Dr. Afthab Sayeed P. P, Dr. Pritty S. Babu, Dr. Ashitha G. N, and Dr. Ayisha Mangat—and to my juniors, Er. Ann Annie Shaju and Er. Arsha Sugathan, for their help and technical assistance. I also extend my gratitude to my dear friends Er. Blessy V. A., Er. Namitha M. R., Dr. Sruthi J. K, Er. Rahul K, and Er. Ajna Alavudheen for their unwavering support and prayers.

I sincerely acknowledge Kerala Agricultural University, Thrissur, for the facilities support and funding provided during my research. I also extend my thanks to Central Instruments laboratory, CoVAS, Mannuthy and CARe KERALAM Ltd, KINFRA Park, Koratty for their assistance in SEM, reducing sugar and HPLC analysis.

Finally, I express my deepest appreciation to all the kind-hearted souls who stood by me and prayed for me during this long and challenging journey. You may not realize it, but even a single kind word from you brought light to my heart in moments of despair. I also extend my deepest gratitude to the authors and publishers of the books that became my companions on this journey. Their wisdom illuminated my path, their words offered solace, and their insights transformed me, shaping me into a better person along the way.

Lastly, I sincerely apologize for any unintentional omissions of individuals or organizations who have supported me in various ways throughout this journey. Please know that your contributions, whether direct or indirect, have been truly valued and appreciated.

With gratitude,

NITHYA C

CONTENTS

Chapter No.	Title	Page No.
	LIST OF TABLES	
	LIST OF FIGURES	
	LIST OF PLATES	
	LIST OF APPENDICES	
I	INTRODUCTION	1
II	REIEW OF LITERATURE	7
III	MATERIALS AND METHODS	52
IV	RESULTS AND DISCUSSION	75
V	SUMMARY AND CONCLUSION	153
	REFERENCES	159
	APPENDICES	192
	ABSTRACT	

LIST OF TABLES

Table No.	Title of the table	Page No.
2.1	Proximate Composition, biochemical and physicochemical properties of red	10
	dragon fruit pulp and juice	
2.2	Health benefits of dragon fruit	18
2.3	Juice extraction studies	23
2.4	Thermal Processing of Dragon Fruit Juice	25
2.5	Non-Thermal Processing of Dragon Fruit Juice	26
2.6	Value Added Products from Red Dragon Fruit Juice	29
2.7	Ultrasound Assisted Extraction of Fruit Juices	35
2.8	Pulsed Electric Field (PEF)-Assisted Extraction of Fruit Juices	39
2.9	Advances in PEF Assisted Pasteurization of Fruit Juices and Fruit Based Beverages	42
2.10.	Combination of PEF with Other Non-Thermal Technologies	47
2.11	Advances in Retort Processing of Fruits and Vegetables	48
2.12	Retort Pouch Processing of other Ready to Eat (RTE) Foods	50
2.13	Retort Processing of Foods- Challenges and Solutions	51
3.1	List of independent variables used in Box-Behnken design for PEF pre-	55
2.2	treatment List of index on deut vanishles used in three level feetanish design for US and	<i>E E</i>
3.2.	List of independent variables used in three level factorial design for US pre- treatment	55
3.3	List of independent variables with the levels used for PEF pasteurization	61

4.1	Box- Behnken design matrix and response values of PEF Pre-treatment	81
4.2	The regression coefficients for responses of PEF pre-treatment	84
4.3	Three level factorial design matrix and response values of US Pre-treatment	85
4.4	The regression coefficients for responses of US pre-treatment	86
4.5	Predicted and observed values of responses at optimized conditions	93
4.6	Variations in the physico-chemical properties of control and optimized juice samples	94
4.7	Box- Behnken design matrix and response values of PEF pasteurization	98
4.8.	Regression coefficients for responses of PEF pasteurization	101
4.9	Observed and predicted values of responses at optimized conditions of PEF pasteurization	103
4.10	Central composite design matrix and response values of retort pasteurization	107
4.11	The regression coefficients for responses of retort pasteurization	109
4.12	Observed and predicted values of responses at optimized conditions of retort processing	111
4.13	Sensory evaluation scores	112
4.14	Comparative evaluation of composition of control juice, PEF pasteurized juice and retort pasteurized juice	116
4.15	Rheological properties of control juice	121
4.16	Rheological properties of PEF treated juice	122
4.17	Rheological properties of retort pasteurized juice	123

4.18	Cost analysis of red dragon fruit juice processed by PEF and retort	130
	pasteurization	
4.19	Changes in betacyanin content, TPC, TFC, and DPPH radical scavenging	133
	activity in control and PEF pasteurized juice	
4.20	Changes in TSS and pH during storage of control and PEF pasteurized juice	137
4.21.	Changes in residual PPO and POD activity of control and PEF pasteurized	138
	juice Changes in total plate count and total yeast and mould count during	
4.22		140
	refrigerated storage of control and PEF pasteurized juice	
4.23	Changes in key bioactive compounds and DPPH radical scavenging activity	142
	of red dragon fruit juice during storage after retort pasteurization	
4.24	Changes in TSS and pH of the juice during storage after retort	146
1.2 1	pasteurization	110
4.25	Changes in residual enzyme activity during storage after retort	148
1.23	pasteurization	110
4.26	Changes in total plate count and total yeast and mould count during	151
0	refrigerated storage of retort pasteurized juice	101

LIST OF FIGURES

Fig	Title of figure	Page
No.		No
4.1	The 3-D response surface plots for the effect of PEF pre-treatment on juice	90
	yield (a-c) and betacyanin content (d-f)	
4.2	The 3-D Response surface plots for the effect of PEF pre-treatment on	91
	total phenolic content (a-c) and antioxidant activity (d-f)	
4.3	The 3-D response surface plots for the effect of US pre-treatment on (a)	92
	juice yield (b) betacyanin content (c) total phenolic content (d) antioxidant	
	activity	
4.4	Effect of PEF treatment on betacyanin content in red dragon fruit juice	95
4.5	Effect of PEF treatment on TPC in red dragon fruit juice	96
4.6	Effect of PEF treatment on TFC in red dragon fruit juice	97
4.7	Effect of PEF treatment on PPO residual activity in red dragon fruit juice	102
4.8	Effect of PEF treatment on POD activity in red dragon fruit juice	103
4.9	Effect of retort process parameters on (a) betacyanin content (b) TPC and	105
	(c) TFC	
4.10	Effect of retort process parameters on (a) PPO residual activity and (b)	110
	POD residual activity	
4.11	Graphical representation of sensory evaluation scores	112
4.12	Composition of unpasteurized control juice, PEF and retort pasteurized	117
	juice samples	
4.13	Chromatogram for vitamin C standard	117
4.14	Chromatogram for untreated control juice	118
4.15	Chromatogram for PEF pasteurized juice sample	118
4.16	Chromatogram for retort pasteurized juice sample	118
4.17	Viscosity Vs. shear rate graph of untreated juice	122

4.18	Viscosity Vs. shear rate graph of PEF-pasteurized juice	123
4.19	Viscosity Vs. shear rate graph of retort-pasteurized juice	
4.20	FTIR spectra of unpasteurized red dragon fruit juice	
4.21	FTIR spectra of red dragon fruit juice undergone PEF pasteurization	127
4.22	FTIR spectra of red dragon fruit juice undergone retort pasteurization	128
4.23	Combined FTIR spectra of control, PEF pasteurized and Retort	128
	pasteurized juice samples	
4.24	Changes in betacyanin content of PEF pasteurized juice during storage	131
4.25	Changes in TPC of PEF pasteurized juice during storage	132
4.26	Changes in TFC of PEF pasteurized juice during storage	132
4.27	Changes in DPPH radical scavenging activity of PEF pasteurized juice	136
	during storage	
4.28	Changes in TSS of PEF treated red pitaya juice during storage	137
4.29	Changes in pH of PEF treated red pitaya juice during storage	137
4.30	Changes in residual activity of PEF treated enzymes during storage	139
4.31	Changes in betacyanin content of retort pasteurized juice during storage	142
4.32	Changes in TPC of retort pasteurized juice during storage	142
4.33	Changes in TFC of retort pasteurized juice during storage	144
4.34	Changes in DPPH radical scavenging activity of retort pasteurized juice	145
	during storage	
4.35	Changes in TSS of retort pasteurized juice during storage	147
4.36	Changes in pH of retort pasteurized juice during storage	147
4.37	Changes in residual enzyme activity of retort pasteurized juice during	149
	storage	

LIST OF PLATES

Plate	Title of plate	Page
No.		No.
3.1	Fully ripened red dragon fruit (Hylocereus polyrhizus)	52
3.2	Batch type PEF system	53
3.3	Ultrasonicator	53
3.4	Cold Press Juicer	55
3.5	UV-Vis spectrophotometer	57
3.6	Refrigerated centrifuge	57
3.7	Scanning electron microscope	59
3.8	Steps in batch type PEF pasteurization: (a) Dragon fruit juice, (b) Filling	60
	juice in to the electrode chamber, (c) Connecting electrodes to treatment	
	chamber, (d) Setting PEF process parameters	
3.9	Retort machine	63
3.10	Loading pouches in to the trays after filling, exhausting and sealing	63
3.11	Pouches containing juice samples treated at different time-temperature	63
	combinations	
3.12	Red dragon fruit juice samples subjected to (a) no treatment (b) Retort	65
	pasteurization (c) PEF pasteurization	
3.13	Coded samples kept for sensory evaluation	66
3.14.	Sensory evaluation by untrained panellists	67
3.15	FTIR spectrophotometer	68
3.16	Anton Paar Rheometer	68
3.17	HPLC system	69
3.18	Laminar air flow chamber	72
3.19	Automatic autoclave	72
3.20	Hot air oven	72
3.21	Magnetic stirrer	72
3.22	BOD incubator set at 37 °C	73
3.23	BOD incubator set at 25 °C for total yeast and mould count	73
4.1	SEM micrographs of dragon fruit tissue surfaces (a) untreated control, (b)	95
	PEF pretreated, and (c) US pre-treated samples	

- 4.2 Total plate count in 10⁻⁵ dilutions of (a) control juice after 10 days of 150 storage, (b) retort pasteurized juice after 10 days of storage, (c) control juice after 60 days of storage, (d) Retort pasteurized juice after 60 days of storage
- 4.3 Total yeast and mould count after 50 days of storage in (a) control (b) retort 152 pasteurized juice

SYMBOLS AND ABBREVIATIONS

0/0	Percentage
<	Less than
=	Equal to
°C	Degree Celsius
¢	Cent
×	Multiplication sign
+	Plus
±	Plus or minus
μ	Micro
μg	Microgram
μg/L	Microgram per litre
μs	Micro second
a*	Greenness or redness
b*	Blueness or yellowness
L*	Darkness or lightness
A	Ampere
AC	Alternating current
ANOVA	Analysis of variance
AOAC	Association of Official Analytical Chemists
BCE	Betacyanin equivalent
CFU	Colony Forming Unit
CO ₂	Carbon dioxide
cm	Centimeter
CV	Coefficient of variation
df	Degrees of freedom
E. coli	Escherichia coli
et al.	And others
etc.	et cetera
FAO	Food and Agricultural Organization
FDA	Food and Drug Administration

FRDFD	Fermented red dragon fruit drink
	-
FSSAI	Food Safety and Standards Authority of India
FTIR	Fourier Transform Infrared
g	Gram
GAE	Gallic acid equivalents
h	Hours
НАССР	Hazard Analysis Critical Control Point
ННР	High hydrostatic Pressure
HIPEF	High Intensity Pulsed Electric Field
HMF	Hydroxymethylfurfural
НР	High pressure
HPEF	High pulsed electric field
НРР	High Pressure Processing
HTST	High temperature short time
i.e.	That is
JEVA	Juice evaporation
KAU	Kerala Agricultural University
KCAEFT	Kelappaji College of Agricultural Engineering &
	Food Technology
kg	Kilogram
kHz	Kilo hertz
kV	Kilo volts
kW	
IK VV	Kilo watts
L	Kilo watts Litre
L	Litre
L m	Litre Metre
L m min	Litre Metre Minutes
L m min mL	Litre Metre Minutes Milli litre
L m min mL mm	Litre Metre Minutes Milli litre Milli metre
L m min mL mm mg/L	Litre Metre Minutes Milli litre Milli metre Milli gram per litre
L m min mL mm mg/L mPas	Litre Metre Minutes Milli litre Milli metre Milli gram per litre Milli pascal second
L m min mL mm mg/L mPas MAE	Litre Metre Minutes Milli litre Milli metre Milli gram per litre Milli pascal second Microwave Assisted Extraction

NO	Nitric oxide
PEF	Pulsed electric field
PL	Pulsed light
PME	Pectin methyl esterase
POD	Peroxidase
PPO	Polyphenol oxidase
ppb	Parts per billion
ppm	Parts per million
QE	Quercetin equivalents
R&D	Research and development
RDFD	Red dragon fruit drink
RDFJ	Red dragon fruit juice
RMSE	Root mean square error
RSM	Response Surface Methodology
S	Seconds
TFC	Total Flavonoid content
TP	Thermal pasteurization
TPC	Total phenolic content
TS	Thermosonication
TSS	Total Soluble Solids
UAM	Ultrasound assisted maceration
UAE	Ultrasound Assisted Extraction
US	Ultrasound
UV-Vis	Ultraviolet-visible
V	Volt
VRTP	Variable retort temperature processing
W/g	Watt per gram
Zp	Cell disintegration index

LIST OF APPENDICES

Appendix	Title	Page No.
A	Analysis of variance for responses to PEF pre-treatment	189
В	Analysis of variance for responses to US- pre-treatment	193
С	Analysis of variance for responses to PEF pasteurization	196
D	Analysis of variance for responses to retort pasteurization	201
F	Analysis of variance for results of juice characterization	205
F	Assumptions for cost estimation	217
G	Analysis of variance for storage study of PEF pasteurized juice	220
Н	Analysis of variance for storage study of retort pasteurized juice	249