DECLARATION

I hereby declare that this thesis entitled **"Standardisation and evaluation of thermal and non-thermal processing of ripe jackfruit"** is a bonafide record of research work done by me during the course of research and the thesis has not previously formed the basis for the award of any degree, diploma, associateship, fellowship or other similar title of any other University or Society.

Place: Tavanur Date: **SARANYA.S** (2019 - 28 - 022)

CERTIFICATE

Certified that this thesis entitled **"Standardisation and evaluation of thermal and non-thermal processing of ripe jackfruit"** is a bonafide record of research work done independently by **Ms. Saranya S** under my guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to her.

Place: Vellanikkara

Date:

Dr. Sudheer K. P. (Major Advisor, Advisory committee) Professor and Head, Dept. of Agricultural Engineering, College of Agriculture, Kerala Agricultural University Vellanikkara, Thrissur, Kerala

CERTIFICATE

We, the undersigned members of the advisory committee of Ms. Saranya S (2019-28-022) a candidate for the degree of Doctor of Philosophy in Agricultural Engineering agree that the thesis entitled "Standardisation and evaluation of thermal and non-thermal processing of ripe jackfruit" may be submitted by Mrs. Saranya S (2019-28-022) in partial fulfilment of the requirement for the degree.

Dr. Sudheer K. P. Professor and Head, Dept. of Agricultural Engineering, College of Agriculture, Vellanikkara, Thrissur (Chairman, Advisory committee)

Dr. Rajesh G. K. Asst. Professor, Dept. of Processing and Food Engineering KCAEFT, Tavanur, Malappuram (Member)

Dr. Bindu J. Principal Scientist, Fish Processing Division, ICAR-CIFT, Cochi, (Member) Dr. Prince M. V. Professor and Head, Dept. of Processing and Food Engineering, KCAEFT, Tavanur, Malappuram (Member)

Dr. Sureshkumar P K Professor, Dept. of Agricultural Engineering, College of Agriculture, Vellanikkara, Thrissur (Member)

Dr. Sinija V.R

Professor and Head Department of Food Process Engineering, NIFTEM-Thanjavur EXTERNAL EXAMINER

ACKNOWLEDGEMENT

It is with immense pleasure that I express my sincere gratitude to everyone who has contributed in various ways to the successful completion of my research work as part of my doctoral program at Kerala Agricultural University. First and foremost, I extend my deepest gratitude to the Almighty for His grace, strength, and benevolence, which have guided me through every step of this academic journey.

I am profoundly grateful to my guide and Chairman of the Advisory Committee, **Dr. Sudheer K.P.** (Professor & Head, Department of Agricultural Engineering, College of Agriculture, KAU, Vellanikkara). His invaluable guidance, meticulous scrutiny, and insightful suggestions have been instrumental in the successful completion of this research. I am especially indebted to him for his unwavering support, grant support through the ICAR National Fellow project, his mentorship, and for making arrangements for research facilities, all of which significantly contributed to the success of my study.

It is my privilege to express heartfelt gratitude to **Dr. Jayan P. R**. (Dean, K.C.A.E.F.T., Tavanur) for his constructive suggestions in shaping the technical program and for his constant encouragement throughout my research journey.

I extend my sincere thanks to **Dr. Prince M. V.**, Professor and Head, Department of Processing and Food Engineering, K.C.A.E.F.T., Tavanur, and a member of my Advisory Committee, for his valuable advice and unwavering support. I am also deeply grateful to my Advisory Committee members, **Dr. Sureshkumar P. K.** (Professor, Department of Agricultural Engineering, College of Agriculture, KAU, Vellanikkara), **Dr. Bindu J.** (Principal Scientist, Fish Processing Division, CIFT, Cochin), and **Dr. Rajesh G. K.** (Assistant Professor, Department of Processing and Food Engineering, K.C.A.E.F.T., Tavanur), for their invaluable contributions throughout this research.

I am extremely thankful to **Dr. Hridesh Pandey**, Associate Professor and Head, Department of Food Process Technology, Anand Agricultural University, Anand, for arranging the necessary facilities for the HPP trials and data analysis. Special appreciation goes to **Dr. Sankalpa K.B**. (Assistant Professor, Department of Food Process Engineering, Danaveera Sirasangi Sri Lingaraj-Desai College of Horticulture Engineering and Food Technology, University of Horticultural Sciences, Bagalkot) for her support in research trials and data analysis.

I would also like to express my gratitude to **Mr. Harris** (Librarian-in-Charge, K.C.A.E.F.T., Tavanur) for his assistance in providing library services and online access during my research period.

My sincere thanks to **Mr. Sreekesh P S and Mr. Jithin M. C**, technical staff of the Department of Agricultural Engineering, College of Agriculture, Vellanikkara, whose hard work and continuous support in sample collection and preparation were crucial in completing this project successfully. I am also deeply grateful to Dr. Abdulla (Assistant Manager, KAU-RABI) for his invaluable support in drafting, revising, and publishing research papers. My heartfelt appreciation goes to **Dr. Shahanas J**. (Assistant Professor) for her immense support, both academically and personally, during my data analysis.

Additionally, I extend my sincere thanks to Er. Sreelakshmi, Dr. Vithuprabha, Er. Greeshma, Er. Albin, Er. Ashwin, Mr. Suhail, and Mr. Arun John, staffs of the Department of Agricultural Engineering, College of Agriculture, Vellanikkara, for their cooperation and assistance. I am also deeply appreciative of my friend Er. Arjun Prakash, Dr. Anjaly C. Sunny, Dr. Ashitha G.N., Dr. Aiswarya L, Dr. Aswathi K, L, Er. Soorya, Er. Ann Annie Shaju, Er. Anjaly M. G., Er. Arsha Sugathan and Er. Thousina for your unwavering support and encouragement throughout this journey.

Most importantly, I am profoundly grateful for the unconditional love and support of my family. My beloved parents, **Mr. Purushothaman** and **Mrs. Suseela**, along with my father-in-law, **Mr. Padmanabhan**, and mother-in-law, **Mrs. Visalam**, have been a constant source of inspiration and encouragement. I am especially indebted to my husband, **Mr. Vishnu T.P.**, for his unwavering support and understanding, and to our loving child, **Ninav T. Vishnu**, for his patience and boundless love throughout this journey.

To all who have contributed to this endeavour, I extend my sincerest appreciation and gratitude. Thank you all.....

SARANYA.S

Dedicated to

my family

CONTENTS

Chapter No.	Title	Page No.
	LIST OF TABLES	i
	LIST OF FIGURES	iii
	LIST OF PLATES	Vii
	SYMBOLS AND	
	ABBREVATIONS	viii
1	INDRODUCTION	1
2	REVIEW OF LITRETURE	5
3	MATERIALS AND METHODS	48
4	RESULT AND DISCUSSION	69
5	SUMMARY AND CONCLUSION	219
	REFERENCES	223
	APPENDICES	248
	ABSTRACT	

LIST OF TABLES

Table No.	Title	Page No.
	Nutritional composition of ripe jackfruit (100 g edible	
2.1	portion-fresh weight basis)	7
2.2	Effects of thermal and non-thermal processing on food products	32-35
2.3	Effects of thermal processing on physicochemical properties	38
2.4	Effects of HPP on physicochemical properties of specific fruits and beverages	40
2.5	Physicochemical properties of PL processed fruits and beverages	42
3.1	Thermal processing of ripe jackfruit samples	50
3.2	Coded and un-coded values of process factors in CCD design for retort pouch processed ripe jackfruit	52
3.3	Experimental design for HPP ripe jackfruit	63
3.4	Experimental design for PL processed RJP	67
4.1	Physico-chemical and microbial properties of fresh ripe jackfruit prior to retort pouch pasteurisation	70
4.2	Effect of retort pouch pasterisation on pH, and TSS of ripe jackfruit samples	73
4.3	Effect of Retort pouch pasterisation on BI and YI of ripe jackfruit samples	81
4.4	Physico-chemical and microbial properties of fresh ripe jackfruit prior to retort pouch sterilisation	97

4.5	Microbial analysis of retort pouch sterilised ripe jackfruit samples	117
4.6	Effect of storage on microbial activity of retort pouch pasterised ripe jackfruit samples	143
4.7	Effect of storage on microbial activity of retort pouch sterilised ripe jackfruit	144
4.8	Proximate composition of fresh ripe jackfruit prior to HPP	150
4.9	Effect of HPP on pH, TA, and TSS of ripe jackfruit	152
4.10	Colour characteristics of HPP ripe jackfruit samples	159
4.11	Regression equation in terms of coded factors	163
4.12	Effect of HPP on Total sugar of ripe jackfruit	165
4.13	Effect of storage on microbial activity of HP processed RJP and RJB	184
4.14	Physico-chemical and microbial properties of fresh RJP prior to PL	187
4.15	Effect of PL on pH, TA and TSS of RJP	191
4.16	Colour characteristics of PL-processed ripe jackfruit	192
4.17	Effect of PL on Total sugar and DPPH radical scavenging activity of RJP	200
4.18	Effect of storage on Microbial activity of PL processed RJP	217

Figure No.	Title	Page No.
2.1	Horizontal retort machine	14
2.2	Pressure temperature effect in HPP	22
2.3	Relative pressure levels in HPP and its applications	26
2.4	Continuous PL processing system	29
2.5	Batch-type PL unit	29
3.1	Flow chart for retort pouch processing of ripe jackfruit	51
4.1	TA of retort pouch pasteurised RJB and RJP	74
4.2	L* and a* values of retort pouch pasteurised ripe jackfruit samples	76
4.3	b* values of retort pasteurised ripe jackfruit samples	76
4.4	ΔE values of retort pouch pasteurised ripe jackfruit sample	79
4.5	BI and YI of retort pouch pasteurised ripe jackfruit sample respectively	79
4.6	AA content of retort pouch pasteurised ripe jackfruit samples	80
4.7	TPC of retort pasteurised ripe jackfruit samples	83
4.8	TFC of retort pasteurised ripe jackfruit samples	83
4.9	Effect of Retort pouch pasterisation on DPPH radical scavenging activity	86
4.10	Effect of Retort pouch pasterisation on total sugar of ripe jackfruit	86
4.11	Textural property of retort pouch pasteurised RJB	88
4.12	Dynamic viscosity of retort pouch pasteurised RJP	90
4.13	Viscosity vs Shear relation for retort pouch pasteurised RJP	90
4.14	Reduction in TAM of retort pasteurised ripe jackfruit samples	93
4.15	Reduction in Yeast and mould in retort pasteurised ripe jackfruit sample	93
4.16	Sensory score card of retort pouch pasteurised RJB	95

LIST OF FIGURES

4.17	Sensory score card of retort pouch pasteurised RJP	95
4.18	pH values of retort sterilised ripe jackfruit samples	99
4.19	TSS in retort pouch sterilised ripe jackfruit samples	100
4.20	TA of retort pouch sterilised ripe jackfruit samples	100
4.21	L* value of retort pouch sterilised ripe jackfruit samples	103
4.22	a* value of retort pouch sterilised ripe jackfruit sample	103
4.23	b* value of retort pouch sterilised ripe jackfruit samples	103
4.24	ΔE value of retort pouch sterilised ripe jackfruit sample	106
4.25	BI of retort pouch sterilised ripe jackfruit sample	106
4.26	YI of retort pouch sterilised ripe jackfruit sample	106
4.27	AA content of retort pouch sterilised ripe jackfruit sample	108
4.28	TPC of retort pouch sterilised ripe jackfruit sample	111
4.29	TFC of retort pouch sterilised ripe jackfruit sample	111
4.30	DPPH radical scavenging activity of retort pouch sterilised ripe jackfruit sample	113
4.31	Total sugar content of retort pouch sterilised ripe jackfruit sample	114
4.32	Firmness of retort sterilised ripe jackfruit sample	123
4.33	Dynamic viscosity of retort sterilised RJP	125
4.34	Dynamic viscosity vs shear rate of retort pouch sterilised RJP	126
4.35	sensory analysis of retort sterilised RJB	128
4.36	Sensory analysis of retort pouch sterilised RJP	128
4.37	Effect of storage on pH and TA on retort pouch pasteurised and pH, TA and TSS of retort pouch sterilised ripe jackfruit samples respectively	132
4.38	Effect of storage on TSS of retort pouch pasteurised ripe jackfruit samples	133
4.39	Effect of storage on ΔE on retort processed ripe jackfruit samples	135

4.40	Effect of storage on AA and TPC on retort pouch pasteurised ripe jackfruit samples	138
4.41	Effect of storage on AA and TPC on retort pouch sterilised ripe jackfruit samples	139
4.42	Effect of storage on total sugar content of retort pouch pasterised and sterilised ripe jackfruit samples	141
4.43	Effect of storage on firmness of retort pouch pasterised and sterilised RJB	146
4.44	Effect of storage on sensory characteristics of retort pouch pasterised RJB	147
4.45	Effect of storage on sensory characteristics of retort pouch pasterised RJP	147
4.46	Effect of storage on sensory characteristics of retort pouch sterilised RJB	149
4.47	Effect of storage on sensory characteristics of retort sterilised RJP	149
4.48	Effect of HPP on L * value of RJB and RJP respectively	158
4.49	Effect of HPP on BI, YI and ΔE of RJB respectively	158
4.50	Effect of HPP on AA of ripe jackfruit samples	161
4.51	Effect of HPP on TPC of ripe jackfruit	163
4.52	Effect of HPP on TFC of ripe jackfruit	163
4.53	Effect of HPP on DPPH radical scavenging activity of RJB and RJP	166
4.54	Effect of HPP on firmness of RJB	167
4.55	Effect of HPP on TAM of RJB and RJP respectively	169
4.56	Effect of HPP on yeast/mold of RJB and RJP respectively	169
4.57	Effect of HPP on viscosity of RJP	171
4.58	Viscosity of HPP processed RJP as a function of shear rate	172
4.59	Sensory score card for HP processed RJB	173
4.60	Sensory score card for HP processed RJP	173
4.61	Effect of storage on pH, TA, and TSS of HP processed RJP and RJB	176

4.62	Effect of storage on total colour deviation of HP processed RJP and RJB	177
4.63	Effect of storage on AA and TPC of HP processed RJP and RJB	180
4.64	Effect of storage on Total sugar content of HP processed RJP and RJB	181
4.65	Effect of storage on firmness of HP processed RJB	182
4.66	Effect of storage on sensory score of HP processed RJB	186
4.67	Effect of storage on sensory score of HP processed RJP	186
4.68	AA content of PL treated RJP	194
4.69	Effect of PL on the TPC of PL treated RJP	197
4.70	Effect of PL on the TFC of PL treated RJP	197
4.71	Viscosity of PL treated RJP	203
4.72	Viscosity of PL processed RJP as a function of shear rate	203
4.73	Effect of PL on the TAM of PL treated RJP	206
4.74	Effect of PL on the yeast and mold of PL treated RJP	206
4.75	Sensory analysis of PL treated RJP	208
4.76	Effect of storage on pH, TA, and TSS of PL processed RJP	212
4.77	Effect of storage on total colour deviation of PL processed RJP	212
4.78	Effect of storage on AA,TPC and total sugar content of PL processed RJP	215
4.79	Effect of storage on Sensory analysis of PL processed RJP	218

LIST OF PLATES

Plate No.	Title			
2.1	Laminate film layers in a retort pouch	16		
2.2	Isostatic principle in HPP unit	21		
2.3	Working of HPP unit	21		
3.1	Cutting and deseeding and packing of RJB	49		
3.2	Jackfruit pulping using industrial mixer	49		
3.3	Air exhausting, thermocouple insertion and retorting in steam air retort	50		
3.4	Batch type HPP system	61		
3.5	Surface sterilisation of glassware and PL processing of RJP respectively	66		
4.9	RJB samples (a) before HPP and (b) after HPP	155		
4.10	RJP samples (a)before HPP and (b)after HPP	155		

SYMBOLS AND ABBREVIATIONS

et al.	:	and others
%	:	per cent
&	:	and
/	:	per
<	:	less than
>	:	greater than
±	:	Plus or minus sign
ΔE	:	Total colour difference
0	:	degree
°Brix	:	Degree brix
°C	:	degree celsius
a*	:	Greenness or redness
AA	:	Ascorbic Acid
Al	:	Aluminium
ALPE	:	Aluminium laminated polyethylene
AOAC	:	Association of analytical chemist
b*	:	Blueness or yellowness
BI	:	Browning Index
C.V.	:	Coefficient of variation
Ca	:	Calcium
CCD	:	Central Composite Design

CFU	:	Colony Forming Unit
CRD	:	Completely randomized design
Cu	:	Copper
df	:	Degree of freedom
DPPH	:	2,2-diphenyl-1-picrylhydrazyl
etc.	:	etcetera
F	:	F value
Fe	:	Iron
Fig.	:	Figure
g	:	gram
g/mL	:	Gram per mililiters
GAE	:	Gallic acid Equivalent
h	:	Hour
HPP	:	High Pressure Processed
J/cm ²	:	Joules per centimeter square
kg	:	kilogram
Kg/cm ²	:	Kilogram per square centimetre
L*	:	Lightness or darkness
mg	:	milli gram
min	:	minute
mL	:	milliliter
Mn	:	Manganese
MPa	:	Mega Pascal
Na	:	Sodium

NaOH	:	Sodium hydroxide
No.	:	Number
р	:	probability
pН	:	percentage of H+ ions
PL	:	Pulsed light
PP	:	Poly propylene
RE	:	Rutin equivalents
RJB	:	Ripe jackfruit bulb
RJP	:	Ripe jackfruit pulp
RSM	:	Response Surface Methadology
S	:	second
SD	:	Standard deviation
Sl.	:	Serial
Т	:	treatment
TA	:	Titrable acidity
TAM	:	Total aerobic mesophiles
TFC	:	Total Flavanoid Compound
TPC	:	Total Phenolic Compound
TSS	:	Total Soluble Solids
viz	:	namely
w/w	:	weight by weight
YI	:	Yellowness Index
μm	:	micro meter