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CHAPTER II 

REVIEW OF LITERATURE 

Wetlands play a crucial role as ecosystems, supporting life on earth by 

providing diverse habitats and essential ecological services (Menon et al.,2023). One 

such internationally significant wetland is the Vembanad Kol Wetland in Kerala, 

known for its unique natural wetland type (Mitsch and Gosselink, 2000). The 

northern part of this wetland, known as kole land experiences most fertile soil due to 

nutrient rich alluvium which gets deposited from rivers (Johnkutty and Venugopal, 

1993). Despite their ecological significance, kole lands requires quantifying 

floodwater accumulation as well as canal storage which is essential for effective 

flood prediction and water resource management. The exit for all water present in 

north kole land is through Enamakkal and Idiyanchira regulators but there is lack 

operation policies. In this chapter some of the research works conducted in this field 

to estimate the surface volume, inflow estimation, seepage analysis and simulation-

based optimizations models and software are discussed. 

2.1 ESTIMATION OF SURFACE VOLUME OF RESERVOIR  

Kole lands act as small reservoir where knowing capacities is crucial in water 

resource assessment. Hence principle of   calculation of volume contained in the 

reservoir is used for calculation of runoff volume accumulation in kole lands. A more 

precise approach for estimating reservoir capacity involves delineating the area 

enclosed by contours at suitable intervals. By calculating the volume between two 

consecutive contours and these volumes were summed up to determine the overall 

capacity of the reservoir (Lawrence and Cascio, 2004).  

Many methods available for estimating the volume of a reservoir, categorized 

into direct and indirect approaches. Direct methods include the Mid-Area Method 

and the Prismoidal Method. The Mid-Area Method assumes that the areas contained 

within successive contours represent cross-sections, with the distance between the 

contours corresponding to the contour interval. The Prismoidal Method, on the other 

hand, assumes that the volume enclosed by two contour intervals represents as a 
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prism. Indirect methods involve estimating surface areas from topographical maps 

or satellite images. These surface areas are then used to establish a power relationship 

between the surface area and the reservoir's capacity, which is subsequently used to 

estimate the total capacity. Indirect methods are generally less labour-intensive and 

quicker compared to direct methods (Sawunyama, 2005) 

Assaf et al. (2021) used geographic information systems (GIS) to measure 

and analyze the amount of water stored in small reservoirs. In this study, the Natural 

Difference water Index (NDWI) is used to detect the surface area as the base to 

estimate small reservoir storage capacities. The model equation created by this study 

provided a tool to know the amount of water available per day in the small reservoirs 

during the dry season. 

Khojiakbar et al. (2019) used Remote Sensing and Geoinformation 

Technologies for calculating the area and volume of a water reservoir. The study was 

conducted at Tashtepa water reservoir, which is proposed for construction in the 

Tashkent region. The Tashtepa reservoir area was analyzed using the Google Earth 

program, where the alignment for dam construction was identified, and the data was 

saved in KML (Keyhole Markup Language) format. The alignment and digital 

elevation model (DEM) of the reservoir area were then uploaded into Global 

Mapper, a geographic information system (GIS) software. Contours were generated 

within the DEM, and the longitudinal profile of the alignment along the dams was 

defined. Using this information, the surface area and volume of the water reservoir 

were calculated for each contour level. The results were used to create curve lines 

depicting the relationship between contour and contour area 

Irvem (2020) suggested water storage capacity can be estimated using a 

Digital Elevation Model (DEM), which can be generated from a digitized 

topographic map of basin. In this study, the Buyuk Karacay Dam, located in Hatay 

province, Turkey, was selected as a case study. The water storage volume for the 

Buyuk Karacay Dam was estimated using the DEM within a GIS environment. The 

procedures for calculating storage volume were described, considering the crest 

elevation of the virtual dam and the surrounding topography. Maps of the stream 

network, stream order, and flooded areas were generated using DEM in ILWIS 3.6 
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software. DEMs with pixel sizes of 10, 20, 30, 40, and 50 m were used to calculate 

storage volume based on a dam crest elevation of 347 m above Mean Sea Level 

(MSL). The estimated volumes were then compared to assess the impact of pixel size 

on volume prediction, with results from a survey method conducted after the 

construction of the Buyuk Karacay Dam. The findings indicated that a 10-meter pixel 

size provided the most accurate volume estimation. Using this pixel size, the dam 

reservoir's storage capacity was estimated to be 59.38 ha-m³, which closely matched 

the survey method's result of 57.25 ha-m³. 

Liu et al. (2020) used surface volume in ArcGIS to understand the terrain of 

a reservoir. The surface volume tool in ArcGIS calculates the volume between the 

topographic map and a reference plane, which could be used to develop the elevation 

and volume relationship curve. Additionally, using the surface volume tool in 

ArcGIS, they developed both the original and updated elevation-volume curves of 

the reservoir. By calculating the difference between these curves, the amount of 

silting and its distribution within the reservoir was determined. The results indicated 

that the total sedimentation volume in the reservoir was 4.3 Mm³, with the majority 

of the sedimentation occurred in areas with elevations below 50 m and above 60 m. 

Mehmood et al. (2014) conducted experiment to analyses the submergence 

of the dam using GIS. The study was conducted in Par-Tapi-Narmada River Link 

Project, Gujarat State.  The methodology involved Generation of Digital Elevation 

Model (DEM), generation of contours of 5m interval using CARTOSAT DEM data 

and computation of submergence under various land use classes. The contours of 

different FRL of 144, 149, 154, 159 and 164 m were generated and superimposed on 

IRS LISS-IV image and extent of submergence was delineated  

Fernández et al. (2022) conducted study on ideal placement of reservoirs 

using GIS. The study involved automated ArcGIS Pro model that work with various 

DEM resolutions to calculate volume / surface area ratio using surface volume tool. 

In the first case study, a new reservoir could store 30.7 m³ of water m-2, compared to 

the current 9 m³/m² stored in the nearby existing reservoir. This could reduce the 

flooded area from 25.4 km² to just 6.7 km². The methodology presented in this study 
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enabled the selection of optimal sites where reservoirs can be built with a smaller 

water surface area. 

Hossain et al. (2018) conducted study on extraction of DEM for Saint Martin 

Island, Bangladesh. They stated that various methods and data sources for digital 

elevation modelling (DEM) are well established, but traditional high-resolution data 

often lack easy public access. Although DEM from sources like SRTM (90-m and 

30-m) and Global ASTER (30 m) are available for free, their resolution is sometimes 

insufficient for large-scale, small-area studies. 

Bakiev and Khasanov (2021) conducted a study for determining area and 

volume of the reservoir. Contours were generated for each DEM and then compared 

with the contours from a topographic map. The results indicated that the contours 

from the SRTM and ALOS PALSAR DEMs closely matched those on the 

topographic map, whereas the contours from the ASTER GDEM showed less 

alignment. 120 contours were were generated from topographic map and DEMs. The 

highest capacity obtained from 117m (sea level) was 2132243697 m3 and 

corresponding area was 214.47 km2. 

Hagos et al. (2022) identified dam site using GIS for Chemoga watershed, 

Ethiopia. The surface volume sub tool in the 3D analyst tool in the ArcMap platform 

is used to determine the reservoir's 2D, 3D surface area and volume, as well as the 

cross section (height and width) of the proposed dam. The height of the dams varies 

between 8 and 64 m based on the cross-section along the dam axis, while the width 

ranges from 173 to 875 m. The maximum storage capacity of the reservoirs differs 

according to the surrounding topographic conditions, ranging from 1.68 to 31.48 

Mm³. Additionally, the 2D surface area of the reservoirs spans from 3.19 to 231.8 ha 

across the six proposed dams. 

2.2 ESTIMATION OF INFLOW TO THE RESERVOIR/ REGULATOR  

Rainfall-runoff modelling is crucial for understanding and managing water 

inflow to kole lands and the functioning of regulators in the canal system. By 

estimating the runoff, how much water will be available for irrigation, flood control 

and overall water resource management can be assessed. 
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2.2.1 Rainfall-Runoff Models 

 According to Shoemaker et al. (2005), "model" refers to a collection of 

equations or algorithms that simulate the behaviour of the physical system. 

Additionally, it can be used to describe the various computer software programmes 

that automate the computes of a set of equations or a combination of equations that 

form a system.   

 Since the computer revolution, hydrological modelling has made a huge leap 

forward, which gives birth to a new branch of hydrology, called digital or numerical 

hydrology (Singh, 2018). The integration of several hydrologic cycle components 

and the simulation of the entire watershed were made possible by the hydrological 

modellers' ability to handle a vast amount of data. 

 The advancement of GIS and remote sensing technology has had an impact 

on the development of watershed modelling. Hydrologists now have more 

capabilities because to GIS development, including the ability to handle and study 

large databases that characterise variability in soil surface properties and to better 

display model results (Daniel et al., 2011).  

Previous literature evaluations have provided several ways for categorising 

hydrological models based on a wide range of characteristics (Devia et al., 2015). 

The rainfall-runoff models have been divided into various classes by the 

hydrological modellers. Deterministic and stochastic models based on the spatial 

variability, whereas lumped and distributed models depending on the model 

parameters as a function of space and time. 

 Devia et al. (2015) stated that the deterministic model will produce the same 

results for a single set of input value inputs. In case of stochastic models, which can 

produce a variety of output values from a single set of inputs. The watershed is 

treated as a single entity in lumped models, sometimes known as "global models," 

which ignore regional heterogeneity. As a result, the resulting outputs fail to consider 

the spatial variability of processes, inputs, boundary conditions, and geometric 

system properties (Singh, 2002). A distributed model, by contrast, makes predictions 

by breaking the entire watershed into smaller parts (such as square cells or 
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triangulated irregular networks) to allow the spatial variation of the parameters, 

inputs, and outputs (Moradkhani and Sorooshian, 2008). It has been proposed to 

combine the benefits of both kinds of spatial representation using semi-distributed 

models. As a result, these models can accurately depict a watershed's key 

characteristics while requiring less data and spending lower computation cost to run 

than distributed models (Orellana et al., 2008). 

 Rainfall-runoff models are classified by time scale into two types: continuous 

simulation models and event-based models. Continuous simulation models use a 

time series of rainfall data that may include multiple storm events, while event-based 

models focus on a single rainfall storm event. Based on spatial scale, models are 

categorized by catchment size: small catchments (up to 100 km²), medium-sized 

catchments (100-1000 km²), and large catchments (over 1000 km²).  

Hydrological models can be divided into three groups based on the physical 

processes they simulate: empirical, conceptual, and physically-based models. These 

processes are described by the model algorithms, and the model is data-dependent 

(Saavedra and Mannaerts, 2005). 

 Experimental data or observable input-output interactions are used to build 

empirical (black box) models, which do not explicitly describe the behaviour brought 

on by certain processes. The stationary assumption, which holds that underlying 

conditions do not change during the simulation period, is the restriction on using 

empirical models at the watershed level (Kandel et al., 2004). Conceptual models 

(grey box) sit between empirical models and physically-based models; they typically 

take physical laws into consideration but do so in a highly simplified manner. 

Physically-based, also called process-based (white box) models, are described in 

terms of critical governing laws associated with the hydrological cycle, and they 

have a logical structure similar to the real system being modelled.The following table 

shows the main characteristics of the three models. 

 

 



11 

 

Table 2.1 Rainfall-Runoff Models Comparison Based on Process Description 

(Singh, 2018) 

Empirical model Conceptual model Physically-based model 

Data based or metric or 

black-box model 

Parametric or grey box 

model 

Mechanistic or white box 

model 

Involve mathematical 

equations, derive value 

from available time series 

Based on modelling of 

reservoirs and include 

semi-empirical equations 

with a physical basis 

Based on spatial 

distribution, Evaluation 

of parameters describing 

physical characteristics 

Little consideration of 

features and processes of 

the system 

Parameters are derived 

from field data and 

calibration. 

Require data about the 

initial state of model and 

morphology of catchment 

High predictive power, 

low explanatory depth 

Simple and can be easily 

implemented in computer 

code 

Complex model. Require 

human expertise and 

computation capability 

Cannot be generated to 

other catchments 

Require large 

hydrological and 

meteorological data 

Suffer from scale-related 

problems 

ANN, unit hydrograph 
HBV model, 

TOPMODEL 

MIKE-SHE model, 

SWAT 

 The SWAT model was successful in getting approval for its use in a variety 

of global climates and situations. The model is widely used to research a variety of 

topics, including hydrological modelling, erosion, climate change, and water quality 

at different spatial and temporal scales across Asia, Africa, and Europe (Tuppad et 

al., 2011). 

 Soil & Water Assessment Tool (SWAT) is a river basin scale model 

developed to quantify the impact of land management practices in large, complex 
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watersheds. The objective of SWAT is to forecast the long-term response in 

substantial basins and it is continuous-time model. In the early 1990s, SWAT's first 

version was developed (Engel et al.,1993). The SWAT model is comprehensive 

model that requires a lot of background information such as initial subbasin 

topographic parameters, land use, and soil type. Hydrologic Response Units (HRU) 

are created in a SWAT model based on the type of soil and landuse. During 

simulations, the same HRU is assumed to be homogeneous in hydrologic response 

to land cover change. 

The quantity and quality of runoff from a watershed are largely determined 

by precipitation and the land and water management practices within the area. 

Estimating runoff is essential for various purposes, such as conserving water for 

irrigation or drinking, enhancing groundwater recharge, reducing peak flow to 

prevent flooding, and controlling erosion (Jain et al., 2010). 

Studies conducted in river basins and watersheds globally have demonstrated 

that the SWAT model is an effective tool for estimating runoff and assessing soil 

erosion, aiding in the efficient planning and management of water resources (Shen 

et al., 2009; Tibebe and Bewket, 2010; Wenjie et al., 2011). 

2.2.1.1 Overview of SWAT model 

 In order to forecast the effects of land management methods on water, 

sediment, and agricultural chemical yields in large complex watersheds with a 

diversity of soils, land use, and management circumstances, Arnold et al. (1998) 

developed SWAT on behalf of the US Department of Agriculture (USDA) (Neitsch 

et al., 2011). 

Based on topography, watershed is divided into a number of sub-basins. 

Then, each sub-basin is conceptually further divided into a number of Hydrologic 

Response Units (HRUs), each of which has a distinct combination of soil, land use, 

and slope (Worqlul et al., 2018). 
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1. Model processes 

According to Neitsch et al. (2011), the modelling of hydrology or the 

hydrologic cycle in SWAT is divided into two phases: 

The watershed's sub-basins' water, sediment, and nutrient fluxes to the main 

channel are determined by the land phase, while the watershed's water flow, 

tributaries, and outlet are determined by the routing phase. 

 

Fig. 2.1 Schematic representation of the hydrologic cycle in SWAT model  

The SWAT document provides comprehensive details about these two 

phases (Neitsch et al., 2011). The following sentences give a basic overview of these 

phases: 

Land Phase of the Hydrologic Cycle 

The water balance equation given below provides an estimate of the 

hydrological cycle in the model (Neitsch et al., 2011):  

𝑆𝑊𝑡 =  𝑆𝑊0 + ∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎𝑡
𝑖=1 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤) 
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Where 𝑆𝑊𝑡 is the soil water content, t is the time in days, and 𝑅𝑑𝑎𝑦, 𝑄𝑠𝑢𝑟𝑓, 𝐸𝑎, 𝑊𝑠𝑒𝑒𝑝 

and 𝑄𝑔𝑤are, respectively, daily amounts of precipitation, surface runoff, 

evapotranspiration, water entering the vadose zone from the soil profile, and return 

flow (all units are in mm). 

 SWAT includes two techniques for calculating surface runoff: (i) The Soil 

Conservation Service (SCS) Curve Number (CN) method (Neitsch et al., 2011). This 

method is only available at a daily time step, daily and a sub-hourly time step and 

(ii) the Green and Ampt infiltration method (Green and Ampt, 1911; Neitsch et al., 

2011) can be used. Storage routing algorithms combined with crack-flow model are 

used to predict the percolation across each soil layer. 

 Using three methods—Priestley-Taylor (Priestley and Taylor, 1972), 

Penman-Monteith (Monteith, 1965), and Hargreaves—the projected 

evapotranspiration (PET) is calculated in SWAT (Hargreaves and Samani, 1985). 

The number of inputs required varies amongst the three PET methods offered in 

SWAT. Solar radiation, air temperature, relative humidity, and wind speed are 

necessary for the Penman-Monteith approach. The only difference between the 

Priestley-Taylor and the Hargreaves methods is that the Priestley-Taylor method just 

needs to know the air temperature. 

Routing Phase of the Hydrologic Cycle 

 The Hydrological Model command 's structure is used to direct the loadings 

of water, sediment, and nutrients to the main channel through the network of streams 

in the watershed (Williams and Hann, 1972). According to Neitsch et al.    (2011), 

there are four distinct parts to the routing procedure in the main channel: flood 

routing, sediment routing, nutrient routing, channel pesticide routing. 

2.2.2.2 Improving the Predictive Accuracy of The Model 

 Before going for simulations, hydrologic models must go through calibration 

in order to increase their predicted accuracy. If calibrated correctly, the SWAT model 

can be effectively utilised to support water management policy (Abdelhamid et al., 

2011). All model inputs may not be available to the desired precision, and this 
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emphasizes the need of model calibration. The models must also be validated with 

an independent set of observed data to model prediction and to improve predictive 

accuracy. The term validation is used to explain the method of analysing the 

performance of simulation and/or forecasting of models (Daniel et al., 2011). 

Sensitivity Analysis 

Before going to the actual calibration and validation procedure in SWAT, it 

is crucial to identify the most sensitive parameters for a watershed or sub-watershed. 

On the basis of sensitivity analysis or expert judgement, the user chooses which 

variables to change. Sensitivity analysis is the process of estimating how quickly the 

output of a model will change in response to changes in the model's inputs. The most 

sensitive parameters and the level of precision needed for calibration must be 

determined. Sensitivity analysis enables the identification and ranking of parameters 

that significantly affect a set of desired model outputs (Saltelli et al., 2000). 

The two primary methods of sensitivity analysis are local, which involves 

altering values one at a time, and global, which involves allowing all parameter 

values to change (Van Griensven et al., 2006). The outcomes of the two analyses, 

however, can vary. The importance of one parameter is frequently influenced by the 

value of other related parameters; hence, the problem with one-at-a-time analysis is 

that the correct values of other parameters that are fixed are never known. 

The global sensitivity analysis, all parameters are allowed to vary by certain 

percentage or are simultaneously changed, allowing investigation of parameter 

interactions and their impacts on model outputs. The global sensitivity analysis has 

the drawback of requiring a large number of simulations. However, both techniques 

are important steps in the calibration of the model since they provide insight on the 

sensitivity of the parameters. In various climatic conditions, the modelled stream 

flow may also show varying sensitivity of parameters (Cibin et al., 2010). 

Calibration and Validation 

Calibrating process is the second phase. By better parameterizing a model to 

a specific set of local conditions, calibration attempts to lower the prediction 
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uncertainty. When calibrating a model, values for the input parameters are carefully 

chosen (within their respective uncertainty bounds) and the model's output is 

compared to the observed data under the same assumptions. 

The validation of the relevant component (streamflow, sediment yields, etc.) 

is the last step. Model validation is the process of proving that a particular site-

specific model is capable of producing simulations that are "sufficiently accurate," 

though the exact definition of "sufficiently accurate" can vary depending on the 

project's objectives. Running a model with parameters that were established during 

the calibration procedure and comparing the predictions to actual observed data that 

was not used in the calibration constitutes validation. A good model calibration and 

validation should typically include: 

1. Observed data that include wet, average, and dry years 

2. Multiple evaluation techniques 

3. Calibrating all constituents to be evaluated; and 

4. Verification that other important model outputs are reasonable. 

To ascertain whether the model has been calibrated and validated properly, 

graphical and statistical methods are typically used along with kind of objective 

statistical criteria. 

When performing SWAT calibration, the input parameters must be restricted 

to a realistic range. Identification of crucial parameters and parameter accuracy are 

important for calibration. In other words, before calibrating a SWAT model, 

modelers must choose which parameters to include based on their prior experience 

or the findings of a sensitivity analysis. The impact of HRUs on the model calibration 

process was examined in few researches.  the majority of studies concentrate on 

streamflow predictions for watersheds between 20 and 18,000 km2 (Gassman et al., 

2007). The SWAT CUP is the most popular software used for calibration. GLUE , 

SUFI-2 (Abbaspour et al., 2017), and ParaSol are now supported by the software 

(Van Griensven et al., 2006).  
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SUFI-2 is a Bayesian framework-based algorithm widely used for surface 

runoff calibration. after determining the objective function and parameter range, the 

algorithm provides a parameter set using Latin hypercube sampling, and the resulting 

95% prediction interval of each parameter is calculated. When calculating a model's 

uncertainty, two things are considered: The P-factor is is the percentage of observed 

data enveloped in 95% prediction uncertainty (PPU), which is determined at the 

2.5% and 97.5% levels of the cumulative distribution of output variables. The r-

factor is calculated by dividing the average thickness of the 95PPU band by the 

standard deviation of the observed data (Abbaspour et al.,  2017). The result of the 

calibration includes the best parameter set according to objective function as well as 

the best range for each parameter. While SWAT CUP is widely used for SWAT 

model calibration, it is not using multi-objective calibration algorithms or genetic 

calibration approaches.  

 According to Deb et al. (2002) certain research studies, the NSGA-II 

calibration algorithm for hydrological models performs well. (Zhang et al., 2015). 

Although SUFI-2 and NSGA-II algorithms are both employed in the calibration of 

hydrological models, little study has been done to compare the model performance 

of the two calibration procedures. 

 Ten algorithms were compared for output performance. Three SWAT CUP 

calibration algorithms—SUFI-2, GLUE, and ParaSol—were evaluated and they 

concluded that SUFI-2 was more capable of producing accurate and foretelling 

findings than either of the other two approaches (Tibebe et al., 2016). 

The performance of the algorithms utilised in SWAT CUP was the main 

focus of the majority of the comparisons described above. Although the SWAT 

model community frequently uses SWAT CUP. 

2.2.2.3 Soil and Water Assessment Tool-Calibration and Uncertainty Procedures 

(Swat-Cup) – SUFI-2 

 According to Abbaspour et al. (2017), the SUFI-2 programme is one viable 

method that may easily mimic a large-scale watershed. When simulating streamflow, 

sediment loads, and nutrient loads, it produces better results. Additionally, they 
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stated that the SUFI-2 can manage a huge number of parameters and was extremely 

easy to locate the critical parameter in the watershed. 

 SUFI-2 was demonstrated to be one of the efficient methods for the 

calibration and uncertainty analysis of any catchment by Schuol et al. (2007). The 

least amount of simulations was necessary for SUFI-2 to produce superior outcomes. 

Analyses of many sites and multiple variables can also be performed using SUFI-2. 

 For incorporating various calibration and uncertainty assessments in a 

Japanese river Catchment, Luo et al. (2011) used SWAT-CUP. The catchment 

analysis was conducted using the GLUE and SUFI-2 methodologies, which 

produced positive outcomes with high R2 values of 0.98 and 0.95 for monthly 

simulation. Daily calculations also produced an important R2 value of 0.86 for 

calibration and 0.80 for validation, respectively. According to the study, GLUE 

calibration findings outperformed SUFI-2 calibration results. The alpha factor for 

bank storage (ALPHA BNK) and effective hydraulic conductivity in main channel 

alluvium (CH K2) play a significant role in the calibration and validation of the 

SWAT model, according to the uncertainty analysis. 

 Using the SWAT model, Vikhe and Patil (2014) carried out the hydrological 

modelling evaluation for the Bhima River. For the SWAT-CUP performance 

evaluation of the model, they employed SUFI-2, and they got good statistical 

findings for both calibration and validation. For calibration and validation, they 

received NSE values of 0.81 and 0.77, respectively. Thus, the study demonstrated 

that the model may be successfully utilised for evaluating management scenarios in 

watersheds and for making trustworthy water decisions if it is properly validated. 

 Rouholahnejad et al. (2012) conducted research on the SUFI-2's parallel 

processing for both small- and large-scale models. They claimed that the SUFI-2 

operates effectively in both scenarios and that operating faster thanks to parallel 

processing. 

 For the Wenjing River Basin in China, Wu and Chen (2014) evaluated 

uncertainty estimates in distributed hydrological modelling using the SUFI-2, 

GLUE, and Parasol methodologies. They had good success in evaluating the model. 



19 

 

In comparison to the other two methods, SUFI-2 was able to provide more logical 

predicted quantitative statistical outcomes. 

Calibration and validation are typically performed done separately by splitting the 

available observed data into two datasets, one for calibration, and another for 

validation. Most often, data are divided into time periods, making sure that the 

climate data used for calibration and validation are not significantly different, i.e., 

wet, moderate, and dry years occur in both periods. 

2.2.2.4 Hydrological Studies on SWAT 

 Xie et al. (2018) utilised SWAT model for hydrological modelling in a large 

watershed in Nigeria. The evaluation was carried out on a daily and intermittent 

basis. The results of the study demonstrated that sub-daily models were more 

accurate at reproducing peak flows during the flood season, which is a crucial 

consideration in the formulation of precise strategies and planning for flood 

management and water security in river basins. According to the analysis, baseflow 

contributed to streamflow in the amount of 58% using the sub-daily model as 

opposed to 34% using the daily model. SWAT showed to be an important tool for 

conducting different hydrological assessment in similar watershed behavior. 

 Singh et al. (2012) performed monthly simulations for flows where the 

simulated flow and actual flow data agree quite well. The SWAT model provided 

the description of hydrological processes, which was extremely helpful for making 

decisions about land use management options that affect water quality. The results 

suggested that model can be used to similar watersheds in India that are located in 

the same agro-ecological zone. 

 According to Moriasi et al. (2007), SWAT is the most effective techniques 

for simulating the management of soil and water resources as well as other effects of 

hydrological processes in the use of watershed models. Quantitative statistics like 

Nash-Sutcliffe Efficiency, PBIAS, and RSR were suggested for better model 

evaluation. 
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 For the simulation of daily and monthly discharge from small watersheds, 

Spruill et al. (2000) used the SWAT model. The most important variables included 

saturated hydraulic conductivity, alpha baseflow factor, recharge, drainage area, 

channel length, and channel width. Daily evaluation produced low R2 values of -0.04 

and 0.19, respectively, for the years 1995 and 1996. The data's monthly summaries 

revealed improved performance, with R2 values of 0.58 for 1995 and 0.89 for 1996. 

As a result, it was discovered that choosing precise parameters was important for 

producing simulated streamflow data that closely matched observed values. 

 In the Lake Tana Basin, Ethiopia, Setegn et al. (2008) used the SWAT 2005 

model for hydrological modelling. The model was calibrated using the SUFI-2, 

GLUE, and Parasol algorithms. The flow was more sensitive to the HRU definition 

thresholds than to the subbasin discretization effect, according to the sensitivity 

analysis. Performance was strong for SUFI-2 and GLUE. The calibrated model could 

therefore be applied to additional analyses of climate and land use change as well as 

to management scenarios for flow and soil erosion. 

 SWAT used by Schmidt and Zemadim (2014) to investigate the hydrological 

response of Ethiopia's Upper Nile Basin, which met the model performance criteria. 

ESCO and CN2 were found to be the most sensitive factors for that watershed after 

a sensitivity analysis was conducted. Agricultural lands were also the locations that 

generated the highest runoff, according to the HRU report. Therefore, educating 

farmers about Rain Water Management (RWM) interventions may increase the 

productivity of agriculture. 

 SWAT was effectively used by Kushwaha et al. (2013) to test the model's 

appropriateness in Dabka, Uttarakhand, which is northwest of Nainital and has a 

drainage area of 69.41 km2. Despite the study region being mostly covered by forest, 

the model responded well, with acceptable NSE and R2 values. SOL_K was more 

susceptible to flow generation, followed by CN2 and SOL_K1. For baseflow 

generation, variables like SOL_AWC, SOL_Z and GWQMN were particularly 

sensitive. 

 In order to evaluate the hydrological behaviour of the Bandu River Basin in 

West Bengal, Sahoo S. (2013) employed SWAT. He accomplished surface runoff 
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production well, and the temporal depiction of the surface runoff was positively 

impacted by the surface runoff lag time. The sensitivity analysis showed that   curve 

number and evapotranspiration were the most important critical factors for 

estimating surface runoff. 

Trevedi et al. (2024) estimated the amount of recharge required to fully 

restore the water in the Kanari River using the SWAT model. The model utilized 

weather data as a reference to calculate groundwater recharge rates and runoff. 

Hydrologic Response Units (HRUs) in the SWAT model were identified based on 

slope, land use, land cover, and soil maps. The region was divided into sub-basins, 

and 18 HRUs were delineated within the Kanari River basin. The SWAT model 

provided a water balance analysis for the sub-basin, breaking down precipitation into 

key components: 46.2% was accounted for as surface runoff, 26.9% for percolation, 

26.9% for evapotranspiration, and 1.33% for deep recharge and lateral flow. The 

Nash–Sutcliffe efficiency (NS) during the calibration period was 0.83, and the 

coefficient of determination (R²) for runoff during the same period was 0.92256. For 

the validation period, the R² value was 0.82, while the NS efficiency was 0.71. The 

annual groundwater recharge estimated by the SWAT model ranged from 75.27 mm 

to 379.02 mm, depending on the functions and parameters selected. 

Raaj et al. (2024) estimated peak flow of the Himalayan river by integrating 

SWAT model with machine learning based approach. The results indicated that the 

uncalibrated SWAT model, when combined with machine learning (ML) regression 

models (uSWAT-ML), demonstrated good performance and was comparable to the 

calibrated SWAT model (cSWAT). The cSWAT model achieved satisfactory 

performance with an R2 value of 0.73 and an NSE of 0.72. Among the uSWAT-ML 

models, the EN (Elastic Net) and BR (Bayesian Ridge) models produced superior 

results, achieving R2 values of 0.89 each and NSE values of 0.87. Furthermore, the 

uSWAT-ML approach effectively predicted peak streamflow rates, with the BR and 

EN models achieving an R2 value of 0.71 for peak flow predictions for each models. 

2.3   ESTIMATION OF WATER REQUIREMENT USING CROPWAT MODEL 

Crop calendar in kole lands outlines the best times for planting and harvesting 

based on the expected water availability and the dewatering schedule. The crop 
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calendar helps farmers plan their activities efficiently, ensuring that better use of 

available water resources in the kole lands. To ensure the crop calendar is effectively 

adaptable, it is essential to account for the irrigation demands of the crops. To 

calculate irrigation demand, it is essential to calculate the net irrigation requirement. 

CROPWAT, a software developed by the Food and Agriculture Organization (FAO), 

is commonly used for determining irrigation needs and scheduling. Numerous 

researchers have used the CROPWAT model to assess actual evapotranspiration, 

crop water requirements and to plan irrigation schedules (Kuo et al., 2001; Trivedi 

et al., 2018). 

Knežević et al. (2013) utilized two software programs, CROPWAT and 

ISAREG, to calculate the net irrigation requirement (NIR) for a water balance study 

focused on winter wheat production. The results from both models were compared, 

revealing that the NIR needed to achieve maximum yield was higher when calculated 

using CROPWAT compared to ISAREG. From the results, the authors concluded 

that both models are effective tools for determining the water balance of wheat crops. 

Gangwar et al. (2017) carried out a study to estimate the net irrigation 

requirement for rabi crops in the Bina command area of Madhya Pradesh using 

CROPWAT 8.0 software. The average daily reference crop evapotranspiration was 

found to be 4.62 mm/day. Wheat, gram (pulses), and mustard were the selected rabi 

crops, with their water requirements determined to be 349.8 mm, 304.1 mm, and 

316.9 mm, respectively, using the software. The study estimated the net irrigation 

demand for the Bina command area to be 212.27 Mm³. 

In their study, Surendran et al. (2017) used the CROPWAT model to assess 

crop water needs and evaluate water resource availability in the Kollam district of 

Kerala. The district's overall water balance across agro-ecological units for domestic, 

industrial, and agricultural demands were estimated for both current and future 

needs. Findings indicated that future water demand is projected to exceed available 

resources by 1,550 Mm3. Although irrigation is essential to maximize crop yields, 

sustaining agriculture under water scarcity may require a reduction in irrigated areas. 

Alternatively, implementing water-saving measures such as deficit irrigation, micro-
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irrigation techniques, and adjusting planting schedules were suggested to help 

mitigate the impact of water shortages. 

Bai and Rema (2020) estimated irrigation requirement for Chalakudy River 

Diversion Scheme (CRDS) using CROPWAT software.  The net irrigation for 

the command area of Left Bank Canal (LBC) was found 23.03 Mm3 and  that of 

Right Bank Canal (RBC) 23.87 Mm3. The total average annual net irrigation demand 

of the CRDS command area was obtained as 46.90 Mm3. 

2.4 ESTIMATION OF SEEPAGE LOSS FROM CANALS 

Seepage losses from canal systems remain a major challenge for irrigation 

and water resources in worldwide (Leigh, 2014). Reports from the ICID (1968) 

indicate that these losses constitute up to one-third of total diverted irrigation water, 

with some cases reporting losses as high as 60% (Dhillon, 1967).  

Seepage from earthen canals can be assessed using both direct and indirect 

methods. The three most commonly used direct measurement methods are: a) the 

inflow-outflow test, b) seepage meters, and c) the ponding test. These methods allow 

for quick and localized estimates of water loss rates, which are valuable for effective 

irrigation planning and management. Indirect approaches include the use of 

empirical equations, analytical methods, and simulations via numerical models. (El-

Molla and El-Molla,2021). 

Eshetu and Alamirew (2018) studied seepage loss in both lined and unlined 

canals in Ethiopia's Tendaho sugar estate, using  inflow-outflow method and a 

current meter to measure water velocity in primary, secondary, and tertiary canals. 

Average seepage losses were 0.55% per 100 m (0.0126 l/s/m²) for lined primary 

canals and 0.84% per 100 m (0.0180 l/s/m²) for unlined ones. For secondary and 

tertiary canals, seepage losses were higher at 3.65% (0.0391 l/s/m²) and 4.27% 

(0.0248 l/s/m²) per 100 m, respectively. 

The inflow-outflow test method determines seepage losses by comparing the 

volume of water entering a canal section with the volume exiting it. Measurements 

are performed using current meters, portable or installed flow structures, or a 
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combination of these tools. For evaluations of ponding and inflow-outflow methods, 

Alam and Bhutta (2004) found that the inflow-outflow method was more susceptible 

to measurement errors, especially when seepage losses were lower than the accuracy 

threshold of the flow meters. These errors maybe reduced on longer test sections thus 

accounting for more seepage. 

Sarki et al. (2008) conducted experiment on estimation seepage by 

comparing two different methods an earthen water course in Qaiser in Tando Jam : 

inflow–outflow and second was ponding method. Before study soil texture of bed of 

watercourse was analyzed which was varying from sandy soil to sandy loam, and 

bed slope was calculated with Autolevel, which was 0.0002. Experiment was 

conducted on a straight reach of water course of 600 m length. This reach was 

divided into five sections of 120 m each. For inflow-out flow test reach, inflow and 

outflow were measured by cut-throat flume. Ponding test was conducted over short 

sections of 30 m each in inflow-outflow sections of 120 m. Seepage loss calculated 

was 0.0016 m3 sec-1 (LPS)/100 m by inflow-outflow test and 0.00123 m3/100 m by 

ponding test. Ponding test measured water losses 23% less than inflow-outflow test. 

Reason of this difference may be over estimation of discharge through cut throat 

flume and under estimation of seepage loss through ponding test due to silt 

deposition in the water course, and actual seepage loss could be expected somewhere 

between these two. 

Compared to the inflow–outflow method, the ponding test provides more 

precise seepage measurements. The calculated seepage rate can then be used to 

estimate canal water losses throughout the irrigation season or annually. However, 

the ponding method requires substantial labour, making it costly and impractical for 

large irrigation channels, especially with multiple branches or steep slopes. 

Numerous studies have quantified seepage losses in unlined irrigation canals, 

often using the ponding method. For example, Zhang et al. (2017) highlighted that 

applying the Kostiakov formula for seepage calculation can produce results differing 

from field measurements. Iqbal et al. (2002) studied seepage in 13 irrigation districts 

in Alberta, Canada, by testing at 29 sites with poly-lined earth plugs on 150-meter 

canal sections. They filled the channels to operational depth and recorded the time 
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for water to drop to 80% of the designed level, finding annual seepage losses of 

approximately 91 Mm3 in 1999. 

The ponding test method calculates water loss by measuring the vertical drop 

in water level over a designated time period in a ponded canal section. This approach 

is widely regarded as the preferred method, as numerous studies indicate it offers 

higher accuracy and is less impacted by measurement errors but there is evaporation 

loss during ponding test. Empirical formulas are employed when direct measurement 

of canal water losses is unavailable or impractical. These formulas are based on 

observed relationships between water losses and specific hydraulic conditions. Some 

formulas are tailored for highly localized conditions, while others provide estimates 

for more general cases, such as unlined or lined canals. Certain formulas also require 

data on canal discharge/velocity or the saturated permeability of canal soils (Dhillon 

1968). 

A seepage meter is a confined cylinder inserted into the side or bottom of a 

canal to measure permeability rates in a small, specific area. Estimating seepage 

losses with this method depends on conducting multiple tests and averaging the 

results over the length and perimeter of a canal section. However, seepage meters 

have limitations: they are generally effective only in water depths less than  0.6 m 

(Iqbal et al., 2002) and can only be used in earthen or unlined canals. 

Mohammadiyeh et al. (2010) conducted experiment for quantifying water 

losses in earthen channels by comparing empirical formulas—including those from 

Ingham, Davis-Wilson, Moleswerth and Yennidumia, and Misra and Moritz (Kraatz, 

1977)—against field observations.  

Wachyan and Rushton (1987) studied how hydraulic conductivity impacts 

canal seepage. In this study, a soil layer of lower hydraulic conductivity laid under  

a more permeable layer. Results indicated that lining only the canal bed, with unlined 

walls, reduced seepage by 4% compared to fully unlined canals. whereas, lining only 

the canal walls, with an unlined bed, led to a 2% reduction in seepage relative to the 

unlined condition.  
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Yao et al. (2012) performed ponding tests on four canal sections in multi-

layered soils in Northwest China to examine canal leakage characteristics. The 

sections had various linings, including concrete, pebble, clay with compacted canal 

beds, and compacted beds alone. Additionally, they used the HYDRUS-2D 

numerical model to simulate seepage and identify influencing factors, providing a 

comprehensive assessment of seepage behavior across different lining types. 

Solomon (2014) investigated steady-state seepage from an irrigation canal in 

asymmetrical trapezoidal concrete-lined canal. They applied a finite element method 

to calculate the flow volume and examined typical soil permeability values for both 

single-layer and two-layered subsoils. Additionally, the impact of clay-cement 

concrete as a lining material on seepage control also assessed. 

Salmasi and Abraham (2020) studied on predicting seepage from unlined 

earthen channels using the Finite Element Method (FEM) and Multivariable 

Nonlinear Regression (MVNLR) to model seepage in irrigation canals. The study 

shows that water loss in unlined channels, an issue critical in agriculture, particularly 

in regions facing water scarcity. By using FEM, the study accurately simulates 

various soil and hydraulic parameters, while MVNLR provides a predictive formula, 

which was validated with high accuracy, showing an R² value of 0.928. This 

approach is performed with traditional empirical methods, suggesting that combining 

numerical and regression modelling can improve seepage estimation. 

Jamel (2016) applied the SEEP/W numerical model to analyze seepage rates 

in both lined and unlined triangular open channels. In lined channels, seepage 

increased with higher lining permeability, channel height and soil permeability, but 

decreased with shallower side slopes and reduced freeboard. For unlined channels, 

seepage also increased with increased soil permeability and channel height, while 

decreased with shallower side slopes and less freeboard.  

El-Molla and Molla (2022) conducted study on SEEP/W model to investigate 

the effect of compacted earth lining characteristics on seepage from trapezoidal earth 

eanals.  The study quantified seepage reduction through canal lining by examining 

various scenarios of hydraulic conductivity, lining thickness and placement of 

compacted earth lining. Results indicated that compacted earth lining could 
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significantly reduce water losses, with up to 99.8% of seepage prevented when high-

compaction soil was applied to both the bed and sides.  

Malik and Karim (2020) conducted experiment on seepage modelling and 

analyzing slope stability for the Haditha Dam in Iraq using the finite element method 

with GEOSTUDIO 2012 software. They stated that GEOSTUDIO is a powerful tool 

that can perform various analyses, including stress-strain, seepage, slope stability, 

and dynamic analysis. In particular, SEEP/W and SLOPE/W, two modules within 

GEOSTUDIO were used to simulate the movement of water and the distribution of 

pore-water pressure within permeable materials such as soil and rock. This study 

used the dam as a case study to simulate seepage and slope stability. The input data 

for the software included the dam’s geometry and material properties. SEEP/W 

generated the flow net, showing the phreatic line, equipotential lines and streamlines, 

and calculates the seepage flux. 

Moharrami et al. (2014) conducted a study utilizing the finite element 

method, using the SEEP/W and SLOPE/W programs, to assess seepage and slope 

stability in an earth dam. The study showed how multiple horizontal filters, differing 

in length and position, help to reduce excess pore water pressure due to the rapid 

drawdown of the upstream water level. Results revealed that increasing the number 

of horizontal filters had minimal impact on seepage flow.  

Fattah et al. (2015) applied the finite element method to estimate seepage 

flux through an earth dam and analyzed dam behavior during rapid drawdown in the 

reservoir. For this study, the SEEP/W and SLOPE/W modules in GEOSTUDIO 2007 

were employed, using the Dau Tieng reservoir in Tay Ninh province, South Vietnam. 

Results indicated that the seepage through the earth dam gradually decreased over 

time following the onset of rapid drawdown in the reservoir. 

2.5 SIMULATION BASED OPTIMIZATION MODELS FOR WATER 

MANAGEMENT  

Effective water management in kole lands requires the planned operation of 

regulators. The operation of these regulator is similar to operation policies of 

reservoir. Mathematical modelling techniques play a key role in facilitating this 
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planning process. Researchers have developed various types of mathematical models 

for optimize water use. Simulation models, optimization models and combined 

simulation–optimization models are major types of models used in water 

management. 

Ralph (1993) defined simulation model is a representation of a system used 

to predict the behaviour of the system under a given set of conditions. Alternative 

executions of a simulation model are made to analyze the performance of the system 

under varying conditions, such as for alternative operating policies. The study shows 

that simulation model reproduces hydrologic system and economic performance of 

reservoir system. Also, Simulation models have been routinely applied for many 

years by water resources- development agencies and other entities responsible for 

planning, construction, and management of reservoir projects.  

Simulation models remain in practice a prominent tool for reservoir systems 

planning and management studies. Simulation models associated with reservoir 

operation are usually based on mass balance equation and represent the hydrological 

behaviour of reservoir systems using inflows and other operating conditions. Some 

models however represent economic performance of the reservoir system. 

Application of simulation techniques to water resources planning and management 

started with U.S. Army Corps of Engineers (USACE) doing simulations of the 

Missouri River. The famous Harvard Water Program applied simulation techniques 

to the economic design of water resources (Maass et al. 1962). 

Simulation is a modelling technique designed to replicate the performance of 

complex water resource systems. It is especially valuable in situations where 

optimization techniques may fall short due to their inherent limitations. While 

simulation is not an optimization method on its own, it can help achieve near-optimal 

results. In the context of water resources modelling, these near-optimal solutions can 

be just as useful as the actual optimal solutions. 

The studies of large-scale systems (Chaturvedi and Srivastava, 1981) have 

indicated that even with the use of simple programming approaches such as LP, 

valuable results can be obtained to simplify simulation. In a pure simulation model, 

reservoir releases are determined using predetermined operating rules. They 
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reviewed a variety of operating policies for reservoirs in series and in parallel, which 

are useful for real-time, seasonal, and long-term operations of multi-reservoir 

systems. Identifying effective pre-defined operating rules for complex multi 

reservoir systems with simulation is a challenging task. To overcome this problem 

the researchers generally employ optimization methods within simulation models 

(Johnson et al. 1993). Tejada-Guibert et al. (1993) compared SDP and SDP within 

simulation, for defining the operation policy of a multi-reservoir system. The authors 

found that the latter approach was superior. 

A simulation- mixed integer LP (MILP) approach was used by Randall et al. 

(1997) for long-range water supply planning in the Alameda County Water District 

(California). The authors showed that MILP engine used in long-term simulation 

model had demonstrable advantages over network approaches. Karamouz et al. 

(2004) analyzed regional water resources issues in a complex system using a 

combined optimization-simulation model. A methodology (Wang et al. 2005), 

combining the constraint technique, decomposition iteration and simulation analysis 

has been presented to alleviate the dimensionality difficulty in solving the stochastic 

multi-objective optimization problem of reservoirs in parallel. 

A simulation model comprises several key components, including inputs, 

outputs, physical relationships between variables, constraints, and operating rules. 

The model processes inputs into outputs based on these physical relationships and 

constraints. To conduct a simulation, the first step is to decompose the complex 

system into sub-systems and establish appropriate linkages between them. Computer 

programs are then developed for each sub-system to facilitate the transfer of 

information between them. Verification of the model is essential, using known inputs 

and outputs to ensure its accuracy. Once verified, the model can be run with various 

input sets to generate corresponding outputs. Each simulation run produces a specific 

output for each input set, and the results of multiple simulations are referred to as 

response surfaces (Vedula and Mujumdar, 2005). 

Bejranonda et al. (2011) conducted a simulation study to the increasing water 

demands for agriculture in Thailand, where rice is a predominant crop. They 

investigated and simulated the interaction between surface water and groundwater 
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using a mathematical model for groundwater flow, revealing significant seasonal 

interactions between the two water sources in the study area. By simulating scenarios 

with the maximum possible drawdown of hydraulic head, they estimated the 

groundwater potential of the region. The authors concluded that utilizing unused 

surface water during the transition from the wet to the dry season for groundwater 

recharge, along with appropriate allocation of this groundwater for conjunctive use, 

could effectively address the water scarcity issue in the area. 

Simulation is a vital method for evaluating alternative water resource systems 

and plans. It serves as an effective tool for performance assessment by tracking the 

behavior of complex systems (Mohan and Jyothiprakash, 2003). Through computer 

programs tailored to specific problems, simulation can provide insights into expected 

system performance. By applying various operating policies or decisions, the output 

of the system can be analyzed using simulation models. Input variables should 

characterize the system, while inputs and inflows—such as rainfall and other 

hydrological parameters—must also be incorporated into the simulation model.  

According to Rani (2013) simulation was an initial step in planning large-

scale systems. However, given the extensive options for configurations, capacities, 

and operating policies, using simulation alone—without prior screening through 

optimization—can be highly time-consuming. Preliminary optimization helps 

narrow down feasible options, making the subsequent simulation process more 

efficient. The optimization methods have been proved of much importance when 

used with simulation modelling and the two approaches when combined give the 

best results. 

Besides the traditional optimization methods, ANN and Evolution Algorithm 

(EA)s have also been used in combination with simulation in reservoir systems 

management. For example, Cancelliere et al. (2002) derived monthly operating rules 

for an irrigation reservoir using DP and ANN, which were further validated by 

simulating the behaviour of the reservoir over a shorter period, not included in the 

period used for training the networks. A combined neural network simulation– 

optimization model with multiple hedging rules was used for screening the operation 

policies by Neelakantan and Pundarikanthan (1999). 
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Koutsoyiannis and Economou (2003) proposed a low dimensional 

Parameterization simulation–optimization approach using the methodology of 

parametric rule introduced by Nalbantis and Koutsoyiannis (1997). Simulation was 

used to obtain values of the performance measure, which was optimized by a 

nonlinear optimization procedure. In a study by Suiadee and Tingsanchali (2007), 

combined simulation– Genetic Algorithm (GA) model software with a graphical 

interface capability was developed. GA was used to determine the optimal upper and 

lower rule curves which were used in simulation. The authors found that the annual 

net benefit using combined simulation–GA model was slightly higher than those 

computed by HEC-3, SOP and the existing actual operation. 

Dhar and Datta (2008) proposed a linked Genetic Algorithm (GA) based 

simulation–optimization methodology for optimal control of water quality, 

downstream of a reservoir. The model links an elitist GA and a surface water quality 

simulation model (CE-QUALW2). They concluded that the methodology can be 

extended to multireservoirs; however, the increase in number of reservoirs with a 

longer time horizon will increase the computational burden, as CPU time required 

even for single reservoir problem was quite large. Authors suggested that 

development of a parallel code or use of metamodels, such as, ANNs may be very 

useful in reducing CPU time for solving large and complex reservoir systems 

operation problems. 

Combined optimization and generalized simulation model have also been 

used in many studies (Labadie 2004). Recently, efforts have also been made to link 

CI and generalized computer simulation models. For example, Shourian et al. (2008) 

developed a hybrid PSO-MODSIM model to propose optimum sizes of the planned 

water storage and transfer facilities in the upstream Sirvan basin in Iran. In this 

procedure MODSIM has been embedded in PSO algorithm. The design and 

operation variables are varied and evolved using PSO, while MODSIM is called to 

simulate the system performance and to evaluate the fitness of each set of these 

design and operation variables with respect to the model’s objective function. 

Latif et al. (2020) developed reservoir water balance simulation model for 

Klang Gate Reservoir, Malaysia. Model was developed by using inflow,  release of 
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dam, initial and final storage of the reservoir. By using the final and initial storage 

of reservoir, release, and inflow data from the year 1997 to 2007, the Klang Gates 

Reservoir water balance simulation model was successfully developed to predict the 

monthly water losses. The proposed model provided monthly forecasting with 

maximum root mean square error of ± 20.07%.  

An optimal solution represents the mathematically best outcome achievable 

for a given system or situation based on its formulated mathematical model. Check 

In water management, regulator/reservoir operation an optimal relase from dam is 

the scenario may prove sub-optimal for another. To address varying conditions, 

optimization techniques such as linear programming, nonlinear programming, and 

dynamic programming are used to identify the best solutions for each specific 

scenario (Safavi et al., 2010). 

Vedula et al. (2005) developed a mathematical model utilizing linear 

programming to determine an optimal allocation policy for canal and groundwater 

in a reservoir-canal-aquifer system with multiple crops in its command area. The 

primary objective of the study was to maximize the sum of relative yields from 

various crops by integrating irrigation from canal water and groundwater pumping. 

Crop water allocations for different growing periods were achieved through the 

conjunctive use of these water sources while adhering to three major constraints: 

maintaining a mass balance of water in the reservoir, ensuring soil moisture balance 

for each crop, and controlling groundwater level fluctuations. The authors validated 

the model's applicability by conducting a study in the command area of a reservoir 

located in the Chitradurga district of Karnataka State. 

Chaves and Kojiri (2007) conducted experiment on water quality and 

optimization models for the assessment of planning operations of a storage reservoir. 

The purpose of this paper is to consider a multipurpose reservoir, under different 

water demands and uses from societies, concerning reservoir water quality. The 

proposed optimization is realized through the use of dynamic programming 

combined with stochastic techniques that can handle the probabilistic characteristics 

of inflow quantity and quality. For the water quality assessment, the UNEP/ILEC 
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one-dimensional model with two layers called PAMOLARE is applied. Finally, 

sensitivity analysis was carried out using a genetic algorithm model. 

Most water management systems are large and complex, making them 

challenging to model using either optimization or simulation alone. In such cases, 

combination models are essential, with simulation-optimization (SO) models being 

particularly suitable. In this approach, the simulation model forecasts the outcomes 

of different management strategies, while the optimization model identifies the 

mathematically optimal management strategy. The simulation model typically 

generates near-optimal solutions, which the optimization model then refines to 

achieve an optimal solution. This process allows the simulation model to streamline 

the size and complexity of the optimization model. Today, simulation-optimization 

models are commonly employed to address conjunctive water management 

challenges. Many of these models now incorporate multi-objective considerations, 

often involving conflicting objectives in the context of conjunctive water 

management (Vedula and Mujumdar, 2005). 

Kumar et al. (2013) developed an integrated modelling framework that 

included irrigation demand, canal water supply, and groundwater balance in a canal-

irrigated area. The framework aimed to assess the effects of various levels of scenario 

analysis. Among the three scenarios tested—design supplies with the current 

cropping pattern, design supplies with an increased cropped area, and optimum 

supplies with an increased cropped area—the third scenario was determined to be 

optimal. This model was applied in a case study at the Srisailam RBC project in 

Andhra Pradesh, revealing that regulating canal water supply could facilitate 

sustainable groundwater use while saving up to 48% of canal water. The conserved 

water could then be redirected to other areas to promote equitable water distribution. 

Chen et al. (2016) developed an integrated simulation and optimization 

model for scheduling irrigation in a multi-crop command area to mitigate the impacts 

of seasonal drought. This model utilized the combined operation of reservoirs and 

ponds, with the primary objective of maximizing annual net benefits. The integrated 

model consists of two key components: an operating policy model and an allocation 
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model. The operating policy model optimized water releases from reservoirs and 

ponds, accounting for the regulatory function of the ponds. 

Chang et al. (2017) developed a simulation-optimization model aimed at 

minimizing water shortages for irrigation within a reservoir-pond irrigation system 

in China. The integrated model consists of two main components: an optimal model 

that optimizes water releases from the reservoir, and a simulation model that 

simulates the water supply from both ponds and reservoirs. This model was 

implemented in the Yarkant River Basin, China. The results indicated that the 

combined operation of reservoirs and ponds in the Yarkant River Basin could lead 

to a 51.21% reduction in average annual water shortages following the construction 

of all three reservoirs in the sub-irrigation regions of the Yarkant River. Additionally, 

the conjunctive operation of these reservoirs also helped to maintain ecological flow 

in the river, providing further environmental benefits. 

Nourani et al. (2020) optimized the operation rule curve of the Shahrchay 

reservoir in the north-west of Iran under climate change. The results showed that the 

average long-term annual runoff volume may be decreased between 0.08% and 

2.27% in the future with regard to the base period, and the simulation results for 

present and future conditions indicated a decrease in water availability. Water 

shortages of 882.62 Mm3 and 879.59 Mm3 in 2025 and 2030 respectively found out 

from simulation model. The optimum storage should be maintained in the reservoir- 

88.93 Mm3 in April and 133.9 Mm3 in June respectively for the Shahrchay reservoir 

Spreadsheets and object-oriented simulation environments such as LOUTUS 

1- 2-3 and STELLA (Systems Thinking, Experiential Learning Laboratory, with 

Animation) are popular approaches for constructing reservoir systems models. 

software like General Algebraic Modeling System (GAMS) , MATLAB ,LINGO, 

ASPEN Plus, COMSOL, and Hysys are powerful tools for optimizing process 

engineering tasks. However, they are designed primarily for professionals, as they 

require extensive expertise and a deep understanding of the software. Optimization 

problem can be solved by means of Excel – Solver by developing spreadsheet 

(Briones and Escola, 2019). 


