DECLARATION

I, hereby declare that this thesis entitled **"Hydrological Approach for Conservation and Management of Water for Sustainable Rice Production in Kole Lands of Thrissur**" is a bonafide record of research work done by me during the course of research and the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title, of any other University or Society.

Place: Tavanur

CHETHAN B J (2019-28-003)

Date:

CERTIFICATE

Certified that this thesis entitled **"Hydrological Approach for Conservation and Management of Water for Sustainable Rice Production in Kole Lands of Thrissur"** is a bonafide record of research work done independently by **Mr. Chethan B J (2019-28-003)** under my guidance and supervision and that it has not previously formed the basis for the award of any degree, diploma, fellowship or associateship to him.

Place: Tavanur

Dr. Shyla Joseph (Major Advisor, Advisory Committee) Professor, ARS Chalakudy

Date:

CERTIFICATE

We the undersigned members of the Advisory Committee of Er. Chethan B J (2019-28-003) a candidate for the degree of Doctor of Philosophy in Agriculture Engineering with major in Soil and Water Conservation Engineering, agree that the thesis entitled "Hydrological Approach for Conservation and Management of Water for Sustainable Rice Production in Kole Lands of Thrissur" may be submitted by Er. Chethan B J, in partial fulfilment of the requirement for the degree.

Dr. Shyla Joseph (Chairman, Advisory Committee) Professor, ARS, Chalakudy **Dr. Abdul Hakkim V M** (Member, Advisory Committee) Professor and Head, Department of SWCE KCAEFT, Tavanur

Dr. Rema K.P. (Member, Advisory Committee) Professor and Head Department of IDE KCAEFT, Tavanur Dr. Asha Joseph (Member, Advisory Committee) Professor, Department of IDE KCAEFT, Tavanur

Dr. Latha A (Member, Advisory Committee) Professor & Head ARS, Mannuthy

EXTERNAL EXAMINER

Dr. P. S. Kanannavar, Chief Scientist, IWMRC, Arabhavi, UAS, Dharwad

DEDICATION

This thesis is dedicated to **Farmers of Kole Lands** and my beloved **Family**, who sacrificed much to bring me up to this level, with their unwavering support.

ACKNOWLEDGEMENT

I hereby wish to acknowledge my gratitude to all the researchers and practitioners who have contributed towards my understanding and thoughts. I sincerely thank all of them.

I avail this opportunity to express my deep sense of gratitude and heartfelt indebtedness to my major advisor **Dr. Shyla Joseph**, Professor, ARS, Chalakudy, for her proper guidance, benevolent criticisms and encouragement during the course of research work.

With extreme pleasure I express my whole-hearted gratitude to **Dr. Jayan P.R.**, Dean and Professor and Head of the Department of Farm Power and Machinery Engineering, K.C.A.E.F.T, Tavanur for the infrastructure and facilities provided for my research study and valuable advice rendered during the study.

I express my profound gratitude to **Dr. Abdul Hakkim V M**, Professor and Head, Department of Soil and Water Conservation Engineering, K.C.A.E.F.T, Tavanur for kind co-operation and scholarly advice.

I offer my special thanks to, **Dr. Sathian K.K.**, Professor, Department of Soil and Water Conservation Engineering, and member of advisory committee for his constant support and guidance during my research work.

I greatly indebted to **Dr. Rema K.P.**, Professor and Head of Department of Irrigation and Drainage Engineering, K.C.A.E.F.T, Tavanur, and member of advisory committee for her guidance.

I remain thankful to **Dr. Asha Joseph,** Professor, Department of Irrigation and Drainage Engineering, K.C.A.E.F.T, Tavanur, a member of advisory committee for his kind co-operation and scholarly advice.

With extreme pleasure I express my whole-hearted gratitude to **Dr. Latha A.,** Professor and Head ARS, Mannuthy a member of advisory committee for her guidance. I express my profound gratitude to **Dr. Anu Varghese**, Associate Professor, Department of Irrigation and Drainage Engineering, K.C.A.E.F.T, Tavanur for kind co-operation and scholarly advice.

Words are not enough to express my gratitude to **Er. Harisankar O P**. for their kind support throughout the field work.

I greatly indebted to Er. Shahala., Er. Jyothish and Er. Jinu, for support which helped me during research work.

With great pleasure, I express my heartfelt thanks to my batch mates Er. Venkata Sai K., Dr. Adwait Bowlekar, Dr. Aiswarya L, Dr. Chandrashekar, Dr. Venkatreddy for their kind support throughout the course work.

My completion of this project could not have been accomplished without the support of my juniors especially, Er. Siddaram., Er. Rajesh, Er. Sharanabasava., Er.Yesubabu, Er. Amith, Er. Aravind, Er. Sambasiva, Er. Abhishek and Er. Harish.

Words are not enough to express my gratitude to Ashwini B N., Surpriya S, Archanal L Er.Pooja M R,. and Er. Aishwarya M.S. for whole hearted support, assistance, and suggestions throughout life.

I express my sincere thanks to all the Academic faculty, library staff and administrative members, KCAEFT, Tavanur, for their valuable cooperation and support.

I am in short of appropriate words to express my gratitude and love to my affectionate parents Jayappa B. N., Bharathi D. R. and my sister Hemalatha B J for their support, encouragement and prayers, ceaseless love and dedicated efforts.

Above all, I bow to the lotus feet of God Almighty for the grace and blessings bestowed on me.

Chethan B J

TABLE OF CONTENTS

Title	Page No.
LIST OF TABLES	Ι
LIST OF FIGURES	III
LIST OF PLATES	VII
SYMBOLS AND ABBREVATIONS	
INTRODUCTION	1
REVIEW OF LITERATURE	5
MATERIALS AND METHODS	36
RESULTS AND DISCUSSION	124
SUMMARY AND CONCLUSIONS	227
REFERENCES	240
APPENDICES	i-xxx
ABSTRACT	
	LIST OF TABLES LIST OF FIGURES LIST OF PLATES SYMBOLS AND ABBREVATIONS SYMBOLS AND ABBREVATIONS INTRODUCTION REVIEW OF LITERATURE MATERIALS AND METHODS RESULTS AND DISCUSSION SUMMARY AND CONCLUSIONS REFERENCES APPENDICES

Table No.	Title	Page No.	
Table 3.1	Canals of Thrissur North Kole	65	
Table 3.2	Discharge of Petti and para for Different hp	99	
Table 3.3	Canals having similar dimensions	112	
Table 3.4	Permeability of different soil texture	115	
Table 4.1	Padavus of Thrissur North Kole	139	
Table 4.2	Comparison of Area as per Digitized Map and Area as	142	
1 abie 4.2	per Government Records of Kole Lands	172	
Table 4.3	Water Depth Measured at Selected Padavus in the	146	
1 0010 4.5	Month of July	140	
Table 4.4	Water Depth Measured at Selected Padavus in the	147	
	Month of August	11,	
Table 4.5	Water Depth Measured at Selected Padavus in the	148	
	Month of September		
Table 4.6	Various Land Use Code for SWAT Model	165	
Table 4.7	Various Land Use Categories of Keecheri River Basin	167	
Table 4.8	Various Land Use Categories of Peramanagalam River Basin	169	
Table 4.9	Various Land Use Categories of Puzhakkal River Basin	171	
Table 4.10	Various Soil series obtained from SPAW and MWSWAT database	172	
Table 4.11	Soil Texture Distribution of Keecheri River Basin	172	
Table 4.12	Distribution of Soil texture for Peramangalam River Basin	173	
Table 4.13	Distribution of Soil texture for Puzhakkal River Basin	173	
Table 4.14	Sensitive Parameters and Ranking for Keecheri River Basin	177	
Table 4.15	Sensitive Parameters and Fitted Range of Values	180	
Table 4.16	Model Evaluation Statistics for Monthly Discharge of Keecheri River Basin	181	

LIST OF TABLES

Table No.	Title	Page No.	
Table 4.17	Inflow of Keecheri, Peramanagalam and Puzhakkal	188	
	River Basin	100	
Table 4.18	Padavus of Zone-I	193	
Table 4.19	Padavus of Zone-II	194	
Table 4.20	Padavus of Zone-III	195	
Table 4.21	Dewatering schedule for Zone-I	202	
Table 4.22	Dewatering schedule for Zone-II	203	
Table 4.23	Dewatering schedule for Zone-III	204	
Table 4.24	Cropping Pattern Suggested for Kole Lands	205	
Table 4.25	Zone I Crop Calendar 1(CC-1)	210	
Table 4.26	Zone- I Crop Calendar 1I(CC-II)	210	
Table 4.27	Zone- II Crop Calendar 1(CC-1)	212	
Table 4.28	Zone- II Crop Calendar 1I (CC-I1)	213	
Table 4.29	Zone-III Crop Calendar	214	
Table 4.30	Comparison of Present Cultivation System and	216	
1 able 4.50	Proposed Zone Wise Cultivation		
Table 4.31	The mean monthly rainfall and effective rainfall	017	
1 able 4.51	estimated from CROPWAT	217	
Table 4.32	Mean daily weather parameters and ET_0 computed by	218	
1 able 4.52	CROPWAT	218	
Table 4.33	GIR (mm) for Different Zones	222	
Table 4.34	Optimum Water Level to be Maintained at Enamakkal	228	
1 aut 4.34	Regulator	220	
Table 1 25	Operational Schedule of Enamakkal and Idiyanchira	001	
Table 4.35	Regulators for CC-I	231	
Table 4.36	Operational Schedule of Enamakkal and Idiyanchira	232	
1 able 4.30	Regulators for CC-II	232	

Fig. No. Title Page No. Fig 2.1 13 Schematic representation of the hydrologic cycle in SWAT model Fig 3.1 Location Map of Ponnani and Thrissur Kole 37 Fig 3.2 Map of Thrissur Kole with Rivers and Canal Networks 38 Blockwise Distribution of North kole Lands 39 Fig 3.3 Fig 3.4 Gramapanchayth wise distribution of North kole lands 40 44 Fig 3.5 Regulator system in north kole lands Fig 3.6 Flowchart of the methodology 55 Workflow for estimation of runoff accumulation in Thrissur North Fig 3.7 56 kole 58 Fig 3.8 Location map of installed scales at north kole Fig 3.9 Map of Interpolated Locations of Scales at North Kole 60 Schematic diagram for selection parameters for surface volume Fig 3.10 61 Fig 3.11 Interface of Surface Volume Tool in ArcGIS 61 Fig 3.12 Canal system of Thrissur North Kole 64 Fig 3.13 Workflow for estimation inflow to the Enamakkal regulator 73 Fig 3.14 Interface of SPAW for soil water characteristics 78 Fig 3.15 Text file for importing precipitation data to SWAT model 80 Fig. 3.16 Flowchart for water balance components estimation by SWAT 81 Fig. 3.17 SWAT -CUP interface 84 Fig 3.18 Relation between SWAT and SWAT CUP 86 Fig 3.19 Components of a 50 hp petty and para pump 94 Fig 3.20 Components of a 50 hp vertical submersible pump 96 Fig 3.21 Components of 50 hp vertical propeller pump 97 Workflow for Crop water requirement in Thrissur kole land Fig 3.22 100 110 Fig 3.23 Workflow for estimation of seepage in SEEP/W Fig 3.24 Interface for setup a model in SEEP/W 111

LIST OF FIGURES

Fig 3.25Interface for (a) set unit system (b) drawing sketches in SEEP/W111Fig 3.26Interface for drawing regions in SEEP/W112Fig. 3.27Drawing domain region in SEEP/W for Peramangalam Thodu IInd
reach, Right Chemmen Chal, Herbert canal and Chenam Chal113Fig. 3.28Interface for adding materials to canal114

Fig. No.	Title	Page No
Fig.3.29	Interface for estimating volume of water content in SEEP/W	114
Fig 3.30	Interface for estimating hydraulic conductivity function in SEEP/W	115
Fig 3.31	Interface for assign materials in SEEP/W	116
Fig 3.32	Drawing Canal Dimensions in SEEP/W for Peramangalamthodu 2 nd Reach, Right Chemmen Chal, Herbert Canal and Chenam Chal	116
Fig 3.33	Interface for defining boundary condition in SEEP/W	117
Fig 3.34	Interface for defining flux section in SEEP/W	118
Fig 3.35	Flux Section Defined in SEEP/W for Peramangalam Thodu 2 nd reach, Right Chemmen Chal, Herbert canal and Chenam Chal	118
Fig 3.36	Interface for assigning mesh size in SEEP/W	119
Fig 3.37	Mesh Generated in SEEP/W for Peramangalam Thodu 2 nd reach, Right Chemmen Chal, Herbert Canal and Chenam Chal	120
Fig 4.1	Padavus of Anthikkad Block panchayath	125
Fig 4.2	Padavus of Arimbur Gramapanchayath	126
Fig 4.3	Padavus of Chazhur Gramapanchayath	126
Fig 4.4	Padavus of Manalur Gramapanchayath	127
Fig 4.5	Padavus of Anthikkad Gramapanchayath	127
Fig 4.6	Padavus of Thanniyam Gramapanchayath	128
Fig 4.7	Padavus of Puzhakkal Block panchayath	129
Fig 4.8	Padavus of Adat Gramapanchayath	130
Fig 4.9	Padavus of Tholur Gramapanchayath	130
Fig 4.10	Padavus of Ayyanthole Gramapanchayath	131
Fig 4.11	Padavus of Kaiparambu Gramapanchayath	131
Fig 4.12	Padavus of Mullassery Block Panchayath	132
Fig 4.13	Padavus of Venkitangu Gramapanchayath	133
Fig 4.14	Padavus of Mullassery Gramapanchayath	133
Fig 4.15	Padavus of Elavally Gramapanchayath	134
Fig 4.16	Padavus of Cherpu Block panchayath	135
Fig 4.17	Padavus of Paralam Gramapanchayath	136
Fig 4.18	Padavus of Cherpu Gramapanchayath	136
Fig 4.19	Padavus of Koorkkencherry Gramapanchayath	137

Fig. No.	Title	Page No.
Fig 4.21	Elevation points processed in ArcGIS	143
Fig 4.22	DEM obtained after interpolation in ArcGIS	143
Fig 4.23	Map of maximum water depth recorded in north kole lands	149
Fig 4.24	Map of water depth recorded before dewatering	150
Fig 4.25	Model Builder in ArcGIS	151
Fig 4.26	Map of maximum accumulated runoff volume in Thrissur north kole lands	154
Fig 4.27	Map of accumulated runoff volume before dewatering in Thrissur north kole lands	155
Fig 4.28	Map of block wise maximum accumulated runoff volume in Thrissur north kole lands	156
Fig 4.29	Map of block wise accumulated runoff volume before dewatering in Thrissur north kole lands	157
Fig 4.30	Water Level of Enamakkal Regulator during the Year 2022	158
Fig 4.31	Canal Storage with respect to Enamakkal Water Level	159
Fig 4.32	Relationship between water level in Enamakkal regulator vs canal storage	159
Fig 4.33	Digital Elevation Model of Keecheri basin	160
Fig 4.34	Digital Elevation Model of Peramanagalam basin	161
Fig 4.35	Digital Elevation Model of Puzhakkal basin	162
Fig 4.36	Watershed delineation of the Keecheri river	162
Fig 4.37	Watershed delineation of the Peramangalam river	163
Fig 4.38	Watershed delineation of the Puzhakkal river	163
Fig 4.39	Landuse map of Keecheri River Basin	166
Fig 4.40	Landuse map of Peramangalam River Basin	168
Fig 4.41	Landuse map of Puzhakkal River Basin	170
Fig 4.42	Slope Map of Keecheri River Basin	174
Fig 4.43	Slope Map of Peramanagalam River Basin	175
Fig 4.44	Slope Map of Puzhakkal River Basin	176
Fig 4.45	Observed discharge and simulated discharge obtained from SWAT- CUP	179
Fig 4.46	Pictorial representation of the SWAT output of Keecheri river basin	182

Fig. No.	Title	Page No.				
Fig 4.47	Pictorial representation of the SWAT output of Peramanagalam river					
F1g 4.47	basin					
F ' 4 40	Pictorial representation of the SWAT output of Puzhakkal river					
Fig. 4.48	basin	183				
Fig 4.49	Hydrograph of Keecheri River Basin	184				
Fig 4.50	Hydrograph of Puzhakkal River Basin	186				
Fig 4.51	Hydrograph of Peramanagalam River Basin	187				
Fig. 4.52	Inflow to Enamakkal and Idiyanchira regulator	189				
Fig. 4.53	Outflow from Enamakkal Regulator	189				
Fig. 4.54	Water balance Components at Enamakkal Regulator	190				
Fig 4.55	New zones of north kole lands	192				
Fig 4.56	Location map of petti and para in Thrissur North Kole land	197				
Fig 4.57	Location map of submersible pumps in Thrissur North Kole land	199				
Fig 4.58	Location map of propeller pumps in Thrissur North Kole land	200				
Fig 4.59	Crop Calendar -I Thrissur North Kole	206				
Fig 4.60	Crop Calendar -II Thrissur North Kole	207				
Fig. 4.61	GIR for different crop calendars in Zone I	219				
Fig. 4.62	GIR for different crop calendars in Zone II	220				
Fig. 4.63	GIR for different crop calendars in Zone III	220				
Fig. 4.64	Water demand for different CC-I	223				
Fig. 4.65	Water demand for different CC-II	223				
Fig. 4.66	Evaporation loss in canals of kole lands	225				
Fig. 4.67	Seepage loss in canals of kole lands	226				
Fig, 4.68	Canal Storage for Crop calendar I	227				
Fig, 4.69	Canal Storage for Crop calendar II	227				
Fig, 4.70	Water Deficit for Crop calendar I	229				
Fig, 4.71	Water Deficit for Crop calendar II	230				

Plate No	Title	Page No.
Plate 3.1	Installation of Scale at (a) Pullazhi <i>padavu</i> (b) Jayanthi <i>padavu</i> (c) Purathur <i>padavu</i>	59
Plate 3.2	A 50 hp Petty and Para Operating in Kodannur <i>Padaavu</i> of Thrissur <i>Kole</i> Lands	95
Plate 3.3	A 50 Hp Vertical Submersible Pump Installed at Anthikad Padavu	97
Plate 3.5	A 50 Hp Vertical Propeller Pump Installed at Anthikkad <i>Padavu</i>	98
Plate 4.1	Water Depth Measuring at Various Padavus	145

LIST OF PLATES

SYMBOLS AND ABBREVIATIONS

01		
%	:	Percentage
,	:	Degree
1	:	Per
	:	Minute
&	:	And
95 PPU	:	95 Percentage Prediction Uncertainty
etc	:	et cetera
et al.	:	and others
2D	:	Two dimensional
3D	:	Three dimensional
ALPHA_BF	:	Base flow alpha factor
AMC	:	Antecedent Moisture Condition
Am.	:	American
Appl.	:	Applied
ARS	:	Agricultural Research Service
ARC GIS	:	Aeronautical Reconnaissance Coverage- Geographic
		Information System
ASTER	:	Advanced Space borne Thermal Emission and Reflection
DEM		Radiometer DEM
Bio.	:	Biology/Biologica
CARTOSAT	:	Cartographic Satellite
CH_K2	:	Effective hydraulic conductivity in main channel alluvium
CPU	:	Computer Programming Unit
CN2	:	Curve Number with AMC-II
Conserv.	:	Conservation
Curr.	:	Current
DEM	:	Digital Elevation Model
Drain.	:	Drainage

Eng.	:	Engineering
Environ.	:	Environment/Environmental
Eq.	:	Equation
ERDAS	:	Earth Resources Data Analysis System
ESCO	:	Soil Evaporation Compensation Factor
ET	:	Evapotranspiration
Exp.	:	Experiment/Experimental
Fig.	:	Figure
FRL	:	Full Reservoir Level
GB	:	Giga Byte
GIS	:	Geographic Information System
GPS	:	Global Positioning System
GLUE	:	Generalized Likelihood Uncertainty Estimation
GW_Delay	:	Ground water delay time
GW_Q	:	Ground water contribution to stream
GWQMN	:	Threshold depth of water in shallow aquifer
hp		Horse Power
ha	:	Hectare
ha-m³	:	Hecatre cubic meter
HRU	:	Hydrological response unit
Hydrol.	:	Hydrology
IDW	:	Inverse Distance Weighted
Int.	:	International
ILWIS	:	Integrated Land and Water Information System
IRS	:	Indian Remote Sensing
Irrig.	:	Irrigation
IRS LISS	:	Indian Remote Sensing Linear Imaging Self Scanning Sensor
ISRO	:	Indian Space Research Organization
KAICO	:	Kerala Agro Industries Corporation

KCAEFT	:	Kelappajji College of Agricultural Engineering and Food Technology
KLDA	:	Kole Land Development Agency
KLDC	:	Kerala Land Development Corporation
KML	:	Keyhole Markup Language
km	:	Kilometre
km ²	:	Square Kilometre
K ₂ O	:	Potassium oxide
KSEB	:	Kerala State Electricity Board
LANDSAT	:	Land Satellite
m	:	Meter
m^2	:	Square Meter
m ³	:	Cubic Meter
m ³ h ⁻¹	:	Cubic Meter per hour
$m^3 s^{-1}$:	Cubic Meter per second
mm day ⁻¹	:	Millimetre per day
mm h ⁻¹	:	Millimetre per hour
Mm ³	:	Million cubic meter
MILP	:	Mixed integer Linear Program
Parasol	:	Parameter solution
PBIAS	:	Percent bias
PERC	:	Water that Percolates below root Zone
PET	:	Potential Evapotranspiration
pН	:	Potential of hydrogen
P_2O_5	:	Diphosphorus pentoxide
PLSR	:	Partial Least Squares Regression
PSO	:	Particle Swarm Optimization
NDWI	:	Natural Difference water Index
NRSC	:	National Remote Sensing Centre
NSC	:	Nash-Sutcliffe Coefficient

RAM	:	Random Access Memory
RS	:	Remote Sensing
R ²	:	Coefficient of Determination
Res.	:	Research
Resour.	:	Resource
Rev.	:	Review
RMSE	:	Root Mean Square Error
SOI	:	Survey of India
SCS	:	Soil Conservation Service
SPSS	:	Statistical Package for The Social Sciences
SRTM	:	Shuttle Radar Topography Mission
SWAT	:	Soil and Water Assessment Tool model
Sci.	:	Science/Sciences
SOL_AWC	:	Available Water holding capacity of soil
SOL_K	:	Soil hydraulic Conductivity
SOL_Z	:	Depth from soil surface to bottom of layer
SPAW	:	Soil Plant Atmosphere Water
SUFI2	:	Sequential Uncertainty Fitting
SURQ	:	Surface Runoff
SWATCUP	:	SWAT Calibration and Uncertainty Programs
SPAW	:	Soil Plant Atmosphere Water
SWC	:	Soil Water Characteristics
SWAT-CUP	:	SWAT Calibration and Uncertainty Program
SW	:	Southwest
USDA	:	United States Department of Agriculture