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ABSTRACT

A Landslide Susceptibility Map (LSM) for Kerala's Chaliyar river basin is what this study aims to 
provide. Several landslides occurred in this basin as a result of the floods in 2018 and 2019. There 
were 592 identified landslides. Using ArcGIS 10.7 software, the landslide inventory was taken from 
the inventories created by the National Remote Sensing Center (NRSC) and Kerala State Disaster 
Management Authority (KSDMA), and the future incidence of landslides was projected by linking 
the landslide cause variables. Landslide inventories were split into training and validation groups in 
this study, with the ratios fixed at 70:30. Two models, including a qualitative one called Weighted 
Linear Combination (WLC) and a quantitative one (a bivariate statistical model) called Weights of 
Evidence (WOE) model, were used to evaluate landslide susceptibility. The following factors were 
employed as causative parameters: Slope, Aspect, Curvature, Relative Relief, TWI, Distance to 
Road, Distance to Streams, Distance to Lineaments, Land Use Land Cover, Drainage Density, 
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Road Density, Lineament Density, Geomorphology, Soil Texture, and NDVI. The performance of 
the models was evaluated using the Receiver Operating Characteristic (ROC)'s Area Under the 
Curve (AUC). In the study, the WLC model yields an AUC success rate accuracy of 59.9%, while 
the WOE model yields an accuracy of 70.9%. In terms of ratio of landslide validation accuracy, the 
WOE model outperforms the WLC model by 11%. The anticipated landslide area is included in the
landslide susceptibility map, which can be incorporated to lessen the risk of landslides in this 
research.

Keywords: Landslide susceptibility; weighted linear combination; weights of evidence; causative 
parameters; ROC-AUC; Chaliyar river basin.

1. INTRODUCTION

Landslides are devastating natural occurrences 
that commonly result in substantial issues in             
hilly areas, resulting in significant harm to natural 
resources as well as the loss of life and property 
[1,2] Many portions of India's steep topography, 
particularly in the Himalayas, Western Ghats, 
Eastern Ghats, and Vindhyans, are susceptible 
to landslides (NDMA, 2004). The occurrence                   
of slides and mass wasting in the Himalayan                  
and Western Ghats regions has lately increased 
due to deforestation and anthropogenic     
activity, along with unsustainable development             
projects and damaging practises, necessitating 
preventative and mitigating measures [3].

Landuse planning includes hazard and risk 
zoning as well as landslide vulnerability of                    
the study area. Landslide susceptibility mapping
is the initial step in reducing the risk of landslides 
by providing necessary data to support 
decisions about urban growth, which significantly 
lowers the risk of landslide damage. In other 
words, the creation of landslide susceptibility 
maps serves to aid human recognition and 
adaptation to landslide hazard mitigation 
strategies (Pourghasemi et al. 2012). 
Nevertheless, such a strategy is predicated on 
the notion that future landslides take place in 
conditions that are comparable to those seen in
the past (Clerici et al. 2006) [4] Up until this point, 
numerous researchers have worked to improve 
the precision of landslide susceptibility mapping.
Numerous techniques, including both                
qualitative and quantitative modelling, have been 
used.

Climate, hydrology, lithology, structure, and 
geomorphic history are some of the major 
variables that can affect the likelihood of a slide, 
although it is not always possible to account for 
every facet of these variables when                
determining susceptibility [5].

There are number of methodologies used                    
in the GIS-assisted landslide susceptibility 
mapping process that may be classified as 
either qualitative or quantitative. Qualitative 
methods rely on professional judgement                     
and are frequently helpful for regional 
assessments (van Westen, et al. 2003). The 
Weighted Linear Combination (WLC) is                     
one of the qualitative models . This method 
divides each layer utilised in landslide 
susceptibility zoning into smaller elements, 
which are then weighted according to their 
significance, before the prepared layers are 
finally merged to create the final map. It is 
founded on three guiding principles: 
decomposition, comparative analysis, and priority 
synthesis. The accuracy of the expert's 
judgement determines the weight of each layer in 
this process, and the more accurate the 
judgement, the more accurate the                         
map that results.

The present approaches employed in the 
landslide susceptibility evaluation studies was 
based on quantitative methods that makes 
relationship between causative factors and 
landslides [6,7,8]. The investigation also utilised
the Weights of Evidence (WoE) modelling 
method, a bivariate statistical technique that 
provides a flexible mechanism to examine the 
significance of input elements for landslide 
susceptibility.

By identifying and mapping the slide locations 
and the associated terrain attributes, the current 
study shows how to apply weighted linear 
combination (WLC) and weights of evidence 
(WoE) models to produce a 
landslide susceptibility zonation map for the 
Chaliyar river basin at a scale of 1:50,000 for the 
study area. The objective of this study is to 
validate the model's applicability and the validity 
of the resulting landslide susceptibility zonation 
map.
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2. MATERIALS AND METHODS 

2.1 Study Area

The Chaliyar River Basin in Kerala, India, which 
is located between latitudes 11°06' and 11°36'N 
and 75°48' and 76°33'E, is covered by 
toposheets 58A and 49M of the Survey                         
of India (SOI). The Chaliyar River, which 
originates in Tamil Nadu's Nilgiri district at a 
height of roughly 2560 metres above                        
mean sea level, is the fourth-largest river in 
Kerala (MSL). The river, known as the Beypore 
River, flows naturally along the northern border of 
the Malappuram district through the towns of 
Nilambur, Mambad, Edavanna,Areakode,                    
and Feroke before joining the Lakshadweep                     
Sea south of Kozhikode, close to Beypore.

2.2 Data Collection 

The data collection for landslide susceptibility 
mapping divided into two groups as:

2.2.1 Landslide inventory

A landslide inventory map is prepared through 
multiple sources ; (1) National Remote Sensing 
Center (NRSC), of the Indian Space Research 
Organization (ISRO), (2) Geological Survey of 
India (GSI) in collaboration with the Kerala                
State Disaster Management Authority (KSDMA), 
(3) BHUVAN (Indian earth observation 
visualization), a web-based geospatial platform 
developed by the Indian Space Research 
Organization (ISRO) (bhukosh.gsi.gov.in). A total 
of 592 landslides are identified and divided into
70% 30% proportion for training and testing the 
models [9,10]. In this study field evaluation of the 
landslide locations were not done.

2.2.2 Causative factors of landslide

In susceptibility mapping, there are no set rules 
for choosing the variables that affect landslides 
[11] Based on earlier landslide studies (Martha et 
al. 2018, [12,13] the scope of the analysis, the 
availability of data, and fieldwork in the Chaliyar 
river basin, the causative factors were chosen. 
Based on literatures and official reports on the 
mapping of landslide susceptibility in Kerala 
[14,15,16]. The most significant landslide 
causative factors namely geomorphology, soil 
type, Land Use Land Cover (LULC), slope angle, 

aspect, curvature, relative relief, Topographic 
Wetness Index (TWI), distance to lineaments, 
distance to streams, distance to roads, drainage 
density, lineament density and Normalized 
Difference Vegetation Index (NDVI) , were 
selected for this study area.  The research area's 
geomorphology map is obtained from the Kerala 
State Remote Sensing and Environment                 
Center (scale 1:50,000). Data on land use and 
land cover are gathered for the research region 
from the Kerala State Land Use Board                    
(scale 1:50,000). The ASTER GDEM is used to 
calculate terrain metrics like slope angle,               
aspect, curvature, relative relief, streams, 
lineaments, and TWI (30m resolution). Data on 
the research area's soil texture are gathered 
from KSDMA, Trivandrum, and the Department 
of Soil Survey & Soil Conservation. Data                     
on roads were gathered from KSDMA in 
Trivandrum. The United States Geological 
Survey's (USGS) Landsat 8 Operational Land 
Imager (OLI) satellite data was used to                  
create NDVI. The same coordinate system        
(WGS 1984 UTM zone 43N) and pixel size 
(30mx30m) were used to create raster maps of 
all causative factor maps [13]. The fifteen 
thematic layers of the causal factors applied in 
this study are depicted in Fig. 2. The spatial 
analyst tool of ArcGIS was used to extract 
information from the rasterized training (70%) 
landslide map and all of the causative 
component maps in order to determine the 
ratings or weights of all factor classes for                  
WLC and WoE models. To assess the spatial                                                             
link between factors and landslide locations in 
the research area, these ratings or                        
weights of each landslide factor will be added
up.

2.3 Landslide Susceptibility Mapping

Landslide susceptibility mapping typically                 
entails the following steps: (1) gathering data and 
building a spatial database of the                         
landslide causative factors; (2) developing a 
landslide inventory; and (3) using a model                   
or approach to evaluate the landslide 
susceptibility according to the relationship 
between landslides and its causative factors; 
and (4) validating the resulting landslide 
susceptibility map [17]. Weighted Linear 
Combination (WLC) and Weights of Evidence 
(WOE) models were the two models used in the 
study. Fig. 3 depicts the research process 
flowchart.
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Fig.1 Location map of the study area showing the elevation and landslide inventory
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Fig 2. Fifteen landslide causative factors used in this study

Fig. 3. Flowchart of the research work
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2.3.1 Weighted Linear Combination (WLC) 
model

WLC model is a data-driven analytical method 
involving several parameters were used in             
order to determine the relative importance and 
level of influence of the chosen parameters to 
permit a landslide event in a GIS environment. 
There are no predetermined standards; only 
professional knowledge is used for assigning 
weights to the factors. In a GIS overlay 
environment, each parameter is classified, 
multiplied by its assigned weight, and the 
weighted averages are added to produce the 
final output map. In WLC, the weight of each 
parameter taken into account is added using 
overlay as follows:

S =  

Where, Wi is the weight of factors and Xi is the 
criterian score of the factor.

The final output is typically a map that shows the 
spatial distribution of landslide susceptibility in 
the study area. The map can be useful for                 
land use planning and natural resource 
management. However, it is important to note 
that the accuracy of the WLC method depends 
on the quality and quantity of data used, as well 
as the expertise of the analyst in selecting the 
appropriate factors and assigning the appropriate 
weights.

2.3.2 Weights of Evidence (WOE) model

The weight of evidence (WoE) method was a 
data-driven approach to identifying the causative 
factors that does not depend on the expert 
opinion for assigning weight. The premise behind 
this approach is that "the past is the key to the 
future." Hence, it is anticipated that comparable 
factors that contributed to earlier landslides will 
be present in future landslides. It is assumed that 
the combination of causative factors of landslides 
is conditionally independent of one another (Sifa 
et al. 2019). Also, it is assumed that the 
confluence of causative elements may have 
caused earlier landslides in the current research 
area. As a result, the elements that mostly 
contribute to or cause landslides were weighted 
using data from previous landslides. Based on 
the presence (W+) or absence (W-) of landslides 
in the area, the WoE technique provides a weight 
to each class of a landslide's causative 
component [18]. This approach uses a 
correlation between positive weights (W+) when 
the event happens and negative weights (W-)

when it doesn't, where W+ and W- are defined 
as:

W+ =

W- =

where P is the probability, B is the presence of a 
desired class of landslide causative factor, is 
the absence of a desired class of landslide 
causative factor, D is the presence of landslides, 
and is the absence of a landslides. Since the 
results are in log form. As a result, the weight 
contrast, abbreviated C, is the difference 
between the two weights (C = W+ - W-). The size 
of the contract shows how far dispersed the 
causal variables and the landslides are in space. 
The standardised value of C is determined by 
dividing it by the standard deviation, or S(C) 
[19,20]. The significance of the spatial link 
between elements influencing the incidence of a 
landslide is determined by the value of Wstd. It 
also displays the posterior probability's relative 
certainty [21]. The following formula is used to 
calculate the S(C) (standard deviation) of positive 
and negative weights:

S(C) = 

The factor is favourable for landslides if the 
weight contrast is positive, and it is unfavourable 
for landslides if it is negative. The factor has little 
bearing on the landslides if the weight contrast is 
close to zero. The landslide susceptibility index 
(LSI) map was developed by averaging the 
standardised (Wstd) weight contrasts of each 
causative element as follows: LSI = SWstd (where 
Wstd = standardised weight contrast of each 
factor). A landslide's susceptibility is high when 
the LSI value is high or positive, and a landslide's 
susceptibility is low when the LSI value is low or 
negative.

2.4 Validation of Landslide Susceptibility 
Map

The validation is required to create an accurate 
map of landslide susceptibility and identify the 
best suitable model. The relative operative 
characteristic (ROC) approach and the 
proportion of observed landslides in various 
susceptibility categories were used to assess the 
validity of the landslide susceptibility map. The 
area under the curve (AUC) of the ROC shows 
the quality of the probabilistic model (its ability to 
forecast the occurrence or non-occurrence of an 
event [22]. AUC values near 1 imply great 
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accuracy, whereas values near 0.5 denote 
inaccuracy [23-25].

3. RESULTS AND DISCUSSION

3.1 Relationship between Landslide and 
Causative Factors

In this study, the correlation between fifteen 
potential causative factors of landslides and their 
occurrence was examined.  For both the WLC 
and WoE models, the causative factors were 
divided into various classes and given weights, 
as shown in Tables 1 and 2, respectively.

3.2. Landslide Susceptibility Map

The landslide susceptibility maps were obtained 
using the  WLC and WoE method. Each 
parameter identified as influencing landslide 

occurrence in the Chaliyar river basin was 
evaluated, classified, and ranked independently 
using the WLC approach. Weights were
assigned to each parameter based on how much 
influence they had on landslides in comparison to 
other parameters (Table 1), and utilising GIS 
overlay functionality, a weighted sum was 
calculated to integrate all the parameters. In the 
ArcGIS weighted sum environment, Fig. 4a 
displays the results (LSI map) of combining 
several weighted parameters using the WLC 
approach. This approach produces an LSI map 
with a value range of 0.087 to 0.311. The map is 
then categorised as a Landslide Susceptibility 
Zonation (LSZ) map, with five classes (Very low, 
low, moderate, high, and very high) based on 
literatures. The classes that result are very low 
(39.58%), low (18.14%), moderate (23.02%), 
high (13.60%), and very  high (5.66%) according 
to the degree of susceptibility [26-28].

Table 1. Data analyses and results obtained from WLC model

Sl No. Factors Class Weights
1 Slope 0-5 0.010

5-10 0.020
10-15 0.060
15-20 0.090
20-25 0.130
25-30 0.140
30-35 0.170
35-45 0.180
>45 0.200

2 Aspect Flat(-1) 0.003
North(0-22.5) 0.099
Northeast(22.5-67.5) 0.131
East(67.5-112.5) 0.156
Southeast(112.5-157.5) 0.115
South(157.5-202.5) 0.140
Southwest(202.5-247.5) 0.082
West(247.5-292.5) 0.090
Northwest(292.5-337.5) 0.085

3 Curvature Concave 0.476
Flat 0.095
Convex 0.429

4 Relative relief <100 m/km2 0.015
100-200 m/km2 0.060
200-300 m/km2 0.149
300-450 m/km2 0.299
450-600 m/km2 0.269
>600 m/km2 0.209

5 TWI Low (5.6 - 7.5) 0.129
Moderate (7.5-10) 0.516
High (10-23) 0.355

6 Distance to drainage 0-25 m 0.220
25-50 m 0.209
50-75 m 0.176
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Sl No. Factors Class Weights
75-100 m 0.165
100-150 m 0.110
150-200 m 0.066
200-250 m 0.044
>250 m 0.011

7 Drainage Density Low (<250 m/km2) 0.516
Moderate (250-500 m/km2) 0.387
High (>500 m/km2) 0.097

8 Distance to road 0-25 m 0.220
25-50 m 0.198
50-75 m 0.187
75-100 m 0.154
100-150 m 0.121
150-200 m 0.066
200-250 m 0.044
>250 m 0.011

9 Road density Low (<250 m/km2) 0.235
Moderate (250-500 m/km2) 0.353
High (>500 m/km2) 0.412

10 Dist.Lineaments 500 - 750 m 0.516
750- 1500 m 0.355
>1500 m 0.129

11 Lineament density Low (<300 m/km2) 0.103
Moderate (300-600 m/km2) 0.310
High (>600 m/km2) 0.586

12 Geomorphology Channel/Point bar 0.000
Coastal Plain 0.000
Denuational Hill 0.429
Denudational slope 0.310
Linear ridge 0.000
Lower Plateau(Lateritic)- Dissected 0.238
Residual mounds 0.024
Valley Fill 0.000
Water body 0.000

13 Land use Land cover Arecanut 0.000
Banana 0.000
Barren rocky/stonywaste/sheetrock 0.000
cashew 0.021
coconut 0.000
coffee 0.053
current fallow 0.011
Eucalyptus 0.011
Forest 0.181
Grassland 0.064
Land with scrub 0.128
Land without scrub 0.138
Marshy land 0.000
Mining/Industrial wasteland 0.000
Builtup 0.000
Mixed crop 0.160
Paddy land 0.000
Pepper 0.011
Rubber 0.096
Tea 0.074
Teak 0.053
Waterbodies 0.000
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Sl No. Factors Class Weights
14 Soil texture Clay 0.286

Gravelly clay 0.257
Gravelly loam 0.214
Loam 0.157
Loamy sand 0.071
Sand 0.014

15 NDVI -0.059-0 0.000
0-0.2 0.045
0.2-0.3 0.227
0.3-0.4 0.318
>0.4 0.409

Table 2. Data analyses and results obtained from WoE model

Factor CLASS W+ S_W+ W- S_W- C S(C) WEIGHT WStd

Slope 0-5° -1.941 0.289 0.196 0.050 -2.137 0.293 -1.941 0.289
5-10° -1.587 0.209 0.260 0.051 -1.846 0.215 -1.587 0.209
10-15° -0.370 0.141 0.064 0.052 -0.434 0.151 -0.370 0.141
15-20° 0.431 0.117 -0.072 0.054 0.503 0.129 0.431 0.117
20-25° 0.743 0.119 -0.103 0.054 0.846 0.130 0.743 0.119
25-30° 0.985 0.124 -0.110 0.054 1.095 0.135 0.985 0.124
30-35° 1.057 0.143 -0.084 0.052 1.141 0.152 1.057 0.143
35-45° 1.027 0.143 -0.083 0.052 1.109 0.152 1.027 0.143
>45° 1.385 0.213 -0.041 0.051 1.426 0.219 1.385 0.213

Aspect Flat 0.000 0.000 0.000 0.000 0.000 0.000 -0.348 0.167
North 0.079 0.183 -0.006 0.051 0.085 0.190 -0.348 0.167
Northeast 0.102 0.134 -0.015 0.053 0.118 0.144 -0.348 0.167
East 0.220 0.128 -0.034 0.053 0.253 0.139 -0.348 0.167
Southeast -0.170 0.153 0.022 0.052 -0.192 0.161 -0.348 0.167
South 0.156 0.123 -0.027 0.054 0.183 0.134 -0.348 0.167
Southwest -0.348 0.167 0.040 0.051 -0.388 0.174 -0.348 0.167
West -0.023 0.144 0.003 0.052 -0.026 0.154 -0.348 0.167
Northwest 0.010 0.140 -0.001 0.053 0.011 0.150 -0.348 0.167

Curvature Concave 0.000 0.067 0.000 0.072 0.000 0.099 0.000 0.072
Flat -0.247 0.099 0.097 0.057 -0.345 0.114 -0.247 0.099
Convex 0.386 0.105 -0.085 0.056 0.472 0.119 0.386 0.105

Relative relief <100 m/km2 -2.664 0.277 0.568 0.050 -3.232 0.282 -2.664 0.277
100-200  m/km2 -1.049 0.204 0.121 0.051 -1.170 0.210 -1.049 0.204
200-300 m/km2 1.012 0.095 -0.210 0.058 1.222 0.111 1.012 0.095
300-450 m/km2 0.832 0.086 -0.246 0.060 1.079 0.105 0.832 0.086
450-600 m/km2 0.531 0.127 -0.070 0.053 0.601 0.138 0.531 0.127
>600 m/km2 1.094 0.122 -0.121 0.054 1.215 0.134 1.094 0.122

TWI Low (5.6 - 7.5) 1.193 0.156 -0.074 0.052 1.266 0.165 1.193 0.156
Moderate 
(7.5-10)

0.030 0.060 -0.062 0.087 0.092 0.106 -0.061 0.087

High (10-23) -0.341 0.105 0.121 0.056 -0.462 0.119 -0.341 0.105
Distance to 
streams

0-25 m 0.345 0.143 -0.038 0.052 0.383 0.152 0.345 0.143
25-50 m 0.172 0.113 -0.037 0.055 0.209 0.125 -0.086 0.066
50-75 m 0.457 0.120 -0.071 0.054 0.528 0.132 0.457 0.120
75-100 m 0.130 0.153 -0.014 0.052 0.144 0.161 -0.086 0.066
100-150 m 0.315 0.112 -0.063 0.055 0.378 0.125 0.315 0.112
150-200 m 0.126 0.169 -0.011 0.051 0.137 0.177 -0.086 0.066
200-250 m -0.046 0.196 0.003 0.051 -0.049 0.203 -0.086 0.066
>250 m -1.247 0.174 0.242 0.051 -1.489 0.182 -1.247 0.174
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Factor CLASS W+ S_W+ W- S_W- C S(C) WEIGHT WStd

Distance to 
lineaments 

>250 m 0.605 0.079 -0.249 0.063 0.855 0.101 0.605 0.079
500 - 750 m 0.351 0.156 -0.032 0.052 0.383 0.165 0.351 0.156
750- 1500 m -0.332 0.068 0.548 0.071 -0.880 0.098 -0.332 0.068

Distance to 
Roads

0-25 m 0.474 0.123 -0.069 0.054 0.543 0.134 0.474 0.123

25-50 m -0.632 0.167 0.088 0.051 -0.720 0.174 -0.632 0.167
50-75 m -1.041 0.267 0.066 0.050 -1.107 0.272 -1.041 0.267
75-100 m -0.731 0.258 0.041 0.050 -0.772 0.263 -0.731 0.258
100-150 m -0.050 0.154 0.006 0.052 -0.056 0.163 0.042 0.054
150-200 m -0.350 0.250 0.017 0.050 -0.367 0.255 0.042 0.054
200-250 m -0.310 0.267 0.013 0.050 -0.323 0.272 0.042 0.054
>250 m 0.352 0.069 -0.269 0.070 0.620 0.098 0.352 0.069

Road Density Low 
(<250m/km2)

0.569 0.144 -0.055 0.052 0.624 0.154 0.5688 0.1444

Moderate (250-
500 m/km2)

0.150 0.082 -0.075 0.061 0.225 0.103 0.1501 0.0822

High (>500 m/km2) -0.174 0.068 0.238 0.071 -0.412 0.098 -0.1741 0.0677
Drainage density Low (<250m/km2) 0.397 0.062 -0.451 0.081 0.848 0.102 0.397 0.062

Moderate (250-
500 m/km2)

-0.270 0.089 0.147 0.059 -0.417 0.107 -0.270 0.089

High (>500 m/km2) -1.082 0.204 0.128 0.051 -1.210 0.210 -1.082 0.204
Lineament 
Density 

Low 
(<300 m/km2)

-0.805 0.577 0.009 0.049 -0.814 0.580 0.009 0.049

Moderate (300-
600 m/km2)

-0.232 0.078 0.190 0.063 -0.423 0.100 -0.232 0.078

High 
(>600m/km2)

0.211 0.064 -0.246 0.077 0.458 0.100 0.211 0.064

Geomorphology Channel/Point bar 0.767 0.052 -1.589 0.141 2.355 0.151 0.767 0.052
Coastal Plain -2.128 0.500 0.075 0.049 -2.203 0.502 -2.128 0.500
Denuational Hill 0.282 0.229 -0.012 0.050 0.294 0.235 0.011 0.050
Denudational 
slope

-1.332 0.209 0.179 0.051 -1.511 0.215 -1.332 0.209

Linear ridge 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.050
Lower 
Plateau(Lateritic)-
Dissected

0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.050

Residual mounds -3.226 0.500 0.269 0.049 -3.495 0.502 -3.226 0.500
Valley Fill 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.050
Water body 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.050

LULC Arecanut 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.056
Banana 0.538 0.065 -0.446 0.075 0.984 0.099 0.538 0.065
Barren 
rocky/stonywaste/s
heetrock

0.952 0.707 -0.003 0.049 0.955 0.709 0.014 0.056

cashew -0.826 0.135 0.219 0.053 -1.045 0.145 -0.826 0.135
coconut -0.128 0.148 0.017 0.052 -0.145 0.156 0.014 0.056
coffee -0.082 1.000 0.000 0.049 -0.082 1.001 0.014 0.056
current fallow -0.558 0.577 0.006 0.049 -0.563 0.580 0.014 0.056
Eucalyptus 1.597 1.000 -0.002 0.049 1.599 1.002 0.014 0.056
Forest 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.056
Grassland 1.271 0.218 -0.038 0.050 1.309 0.224 1.271 0.218
Land with scrub 0.715 0.378 -0.009 0.050 0.724 0.381 0.014 0.056
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Factor CLASS W+ S_W+ W- S_W- C S(C) WEIGHT WStd

Land without scrub 0.267 0.250 -0.009 0.050 0.276 0.255 0.014 0.056
Marshy land 0.384 0.707 -0.002 0.049 0.386 0.709 0.014 0.056
Mining/Industrial 
wasteland

-2.663 0.707 0.067 0.049 -2.730 0.709 -2.663 0.707

Builtup 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.056
Mixed crop 3.151 0.501 -0.009 0.049 3.160 0.503 3.151 0.501
Paddy land 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.056
Pepper 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.056
Rubber 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.056
Tea -1.847 0.577 0.040 0.049 -1.887 0.580 -1.847 0.577
Teak 0.169 0.289 -0.005 0.050 0.174 0.293 0.014 0.056
Waterbodies -0.762 1.000 0.003 0.049 -0.765 1.001 0.014 0.056

NDVI -0.059 0.000 0.000 0.000 0.000 0.000 0.000 0.424 0.135
0-0.2 0.424 0.135 -0.052 0.053 0.476 0.145 0.424 0.135
0.2-0.3 0.017 0.081 -0.010 0.062 0.027 0.102 0.424 0.135
0.3-0.4 -0.069 0.077 0.049 0.064 -0.118 0.100 0.424 0.135
>0.4 -0.203 0.158 0.024 0.052 -

0.228
0.166 0.424 0.135

Soil texture Clay 0.000 0.000 0.000 0.000 0.000 0.000 -0.066 0.062
Gravelly clay 0.091 0.088 -0.038 0.059 0.129 0.106 -0.066 0.062
Gravelly loam 0.118 0.070 -0.101 0.069 0.220 0.098 0.118 0.070
Loam -0.526 0.131 0.120 0.053 -0.646 0.142 -0.526 0.131
Loamy sand 0.000 0.000 0.000 0.000 0.000 0.000 -0.066 0.062
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Fig. 4. Landslide susceptibility index (a) WLC model; (b) WOE model

Fig. 5. ROC-AUC performance of models

With regard to the bivariate statistical model, the 
contrast value that is associated with the 
landslide probability was set to the weights for 
each class of evidentiary themes in the created 
WoE table (Table 2). The classes of each theme 

are given these weights in order to create 
weighted thematic maps, which are then layered 
and numerically added using the equation given 
below to create a map that shows the landslide 
susceptibility index (LSI) (Fig. 4b) [29,30].



Aiswarya et al.; Int. J. Environ. Clim. Change, vol. 13, no. 10, pp. 1860-1875, 2023; Article no.IJECC.104210

1873

LSIc = , where, Fc, is the contrast of 
each factor's range or type.

The study produced an area-specific LSI map by 
combining each parameter with the raster 
calculator and adding the themes one at a time 
to evaluate the impact of each causative factors 
on the final LSI map, which had values ranging 
from -17.940 to 12.262. According to Vijith et al. 
(2014),[2] a high LSI value indicates a higher 
sensitivity to landslides, whereas a lower number 
indicates a reduced susceptibility. Using 
professional judgement, this final LSZ map is 
once more divided into five classes, producing 
five susceptibility levels. The area designated as 
stable, low, moderate, high, and extremely high 
was then combined with the reclassified 
susceptibility zone map. The resulting classes 
are named with the associated degree of
susceptibility namely very low (45.59%), low 
(11.25%), moderate (17.44%), high (17.92%) and 
very high (7.80%).

3.3 Validation of Landslide Susceptibility 
Map

A random sample of 30% of landslides                     
were used to test the validity of the landslide 
susceptibility map. Fig. 5 displays the ROC 
(AUC) curve for model performance. In 
comparison to WLC (AUC=0.599), the WoE 
approach has a high success rate (AUC = 
0.709), according to the AUC value.

4. CONCLUSION

The interaction of numerous components leads 
to the spatial distribution of landslides. The 
inclusion and appropriate assessment of these 
criteria' roles are essential to producing a 
trustworthy and accurate susceptibility map. In 
this study, fifteen landslide-causative factors 
were taken into account, including soil texture, 
geomorphology, LULC, and NDVI, as well as 
slope, aspect, curvature, relative relief, TWI, 
relative relief, distance to streams, roads, and 
lineaments, drainage density, road density, and 
lineament density. In order to create a landslide 
susceptibility map using weighted average 
values, a technique known as weighted linear 
combination (WLC) was utilised, in which specific 
classes of each parameter were assessed and 
factor weights were assigned. The map is then 
divided into five classes Very low, low, 
moderate, high, and very high under the 
Landslide Susceptibility Zonation (LSZ) 
classification system. According to the level of 
susceptibility they represent, the classifications 

that emerge are very low (39.58%), low 
(18.14%), moderate (23.02%), high (13.60%), 
and very high (5.66%). The analysis also used a 
statistical model called the Weights of Evidence 
Model, where the training set served as the 
predictor layer and thematic layers served as 
input layers. The resulting classes are named 
with the associated degree of susceptibility 
namely very low (45.59%), low (11.25%), 
moderate (17.44%), high (17.92%) and very high 
(7.80%) was made possible by the findings of all 
investigations and evaluations. The landslide 
susceptibility map is thought to be helpful for 
locating slope portions that are relative landslide 
susceptible.
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